
Logix5000
Controllers Design
Considerations
1756-Lx, 1769-Lx, 1789-Lx, 1794-Lx,
PowerFlex 700S

Reference Manual

Logix5000 Controllers Comparison
Co

m
m

on
 C

ha
ra

ct
er

is
tic

:
17

56
 C

on
tr

ol
Lo

gi
x

17
69

 C
om

pa
ct

Lo
gi

x
17

89
 S

of
tL

og
ix

58
00

17
94

 F
le

xL
og

ix
Po

w
er

Fl
ex

 7
00

S
D

riv
eL

og
ix

co
nt

ro
lle

r t
as

ks
•

co
nt

in
uo

us
•

pe
rio

di
c

•
ev

en
t

•
32

 ta
sk

s
(o

nl
y

1
co

nt
in

uo
us

)
•

ev
en

t t
as

ks
: s

up
po

rts
 a

ll
ev

en
t

tri
gg

er
s

•
17

69
-L

35
E:

 8
 ta

sk
s

•
17

69
-L

32
E:

 6
 ta

sk
s

•
17

69
-L

31
: 4

 ta
sk

s
•

17
69

-L
20

, -
L3

0:
 4

 ta
sk

s
•

on
ly

 1
 ta

sk
 c

an
 b

e
co

nt
in

uo
us

•
ev

en
t t

as
ks

: s
up

po
rts

 c
on

su
m

ed

ta
g

tri
gg

er
 a

nd
 E

VE
N

T
in

st
ru

ct
io

n

•
32

 ta
sk

s
(o

nl
y

1
co

nt
in

uo
us

)
•

ev
en

t t
as

ks
: s

up
po

rts
 a

ll
ev

en
t

tri
gg

er
s

•
8

ta
sk

s
(o

nl
y

1
co

nt
in

uo
us

)
•

ev
en

t t
as

ks
: s

up
po

rts
 co

ns
um

ed

ta
g

tri
gg

er
 a

nd
 E

VE
N

T
in

st
ru

ct
io

n

•
8

ta
sk

s
(o

nl
y

1
co

nt
in

uo
us

)
•

ev
en

t t
as

ks
: s

up
po

rts
 a

xi
s

an
d

m
ot

io
n

ev
en

t t
rig

ge
rs

us
er

 m
em

or
y

17
56

-L
55

M
12

75
0

Kb
yt

es
17

56
-L

55
M

13
 1

.5
 M

by
te

s
17

56
-L

55
M

15
3.

5
M

by
te

s
17

56
-L

55
M

16
7.

5
M

by
te

s
17

56
-L

55
M

22
75

0
Kb

yt
es

17
56

-L
55

M
23

1.
5

M
by

te
s

17
56

-L
55

M
24

3.
5M

by
te

s
17

56
-L

61
2

M
by

te
s

17
56

-L
62

4
M

by
te

s
17

56
-L

63
8

M
by

te
s

17
69

-L
20

64
 K

by
te

s
17

69
-L

30
25

6
Kb

yt
es

17
69

-L
31

51
2

Kb
yt

es
17

69
-L

32
E

75
0

Kb
yt

es
17

69
-L

35
E

1.
5

M
by

te
s

17
89

-L
10

2
M

by
te

s
3

sl
ot

s,
 n

o
m

ot
io

n
17

89
-L

30
64

 M
by

te
s

5
sl

ot
s

17
89

-L
60

64
 M

by
te

s
16

 s
lo

ts

17
94

-L
33

64
 K

by
te

s
17

94
-L

34
51

2
Kb

yt
es

25
6

Kb
yt

es
76

8
Kb

yt
es

 w
ith

 e
xp

an
si

on
 m

em
or

y

no
nv

ol
at

ile
 u

se
r m

em
or

y
17

56
-L

55
M

12
no

ne
17

56
-L

55
M

13
no

ne
17

56
-L

55
M

15
no

ne
17

56
-L

55
M

16
no

ne
17

56
-L

55
M

22
ye

s
17

56
-L

55
M

23
ye

s
17

56
-L

55
M

24
ye

s
17

56
-L

6x
Co

m
pa

ct
Fl

as
h

17
69

-L
20

ye
s

17
69

-L
30

ye
s

17
69

-L
31

Co
m

pa
ct

Fl
as

h
17

69
-L

32
E

Co
m

pa
ct

Fl
as

h
17

69
-L

35
E

Co
m

pa
ct

Fl
as

h

no
ne

17
94

-L
33

ye
s

17
94

-L
34

/B
ye

s
ye

s
(e

xp
an

si
on

 m
em

or
y)

bu
ilt

-in
 c

om
m

un
ic

at
io

n
po

rts
1

po
rt

RS
-2

32
 s

er
ia

l
(D

F1
 o

r A
SC

II)
•

17
69

-L
20

: 1
 R

S-
23

2
se

ria
l p

or
t

(D
F1

 o
r A

SC
II)

•
17

69
-L

3,
 -L

31
: 2

 R
S-

23
2

se
ria

l
po

rts
 (o

ne
 D

F1
 o

nl
y,

ot
he

r D
F1

 o
r A

SC
II)

•
17

69
-L

32
E,

 -L
35

E:
 1

 E
th

er
N

et
/IP

po

rt
an

d
1

RS
-2

32
 s

er
ia

l p
or

t
(D

F1
 o

r A
SC

II)

de
pe

nd
s

on
 p

er
so

na
l c

om
pu

te
r

•
1

RS
-2

32
 s

er
ia

l p
or

t
(D

F1
 o

r A
SC

II)
•

2
sl

ot
s

fo
r 1

78
8

co
m

m
un

ic
at

io
n

ca
rd

s

•
1

RS
-2

32
 s

er
ia

l p
or

t
(D

F1
 o

r A
SC

II)
•

1
sl

ot
 fo

r 1
78

8
co

m
m

un
ic

at
io

n
ca

rd
s

co
m

m
un

ic
at

io
n

op
tio

ns
(th

es
e

op
tio

ns
 h

av
e

sp
ec

ifi
c

pr
od

uc
ts

 a
nd

 p
ro

fil
es

 fo
r t

he
ir

pl
at

fo
rm

 -
ot

he
r o

pt
io

ns
 a

re

av
ai

la
bl

e
vi

a
3r

d
pa

rty
 p

ro
du

ct
s

an
d

ge
ne

ric
 p

ro
fil

es
)

Et
he

rN
et

/IP
Co

nt
ro

lN
et

De
vi

ce
N

et
Da

ta
 H

ig
hw

ay
 P

lu
s

Un
iv

er
sa

l R
em

ot
e

I/O
se

ria
l

M
od

bu
s

vi
a

la
dd

er
 ro

ut
in

e
DH

-4
85

Sy
nc

hL
in

k

Et
he

rN
et

/IP
De

vi
ce

N
et

se
ria

l
M

od
bu

s
vi

a
la

dd
er

 ro
ut

in
e

DH
-4

85

Et
he

rN
et

/IP
Co

nt
ro

lN
et

De
vi

ce
N

et
se

ria
l

Et
he

rN
et

/IP
Co

nt
ro

lN
et

De
vi

ce
N

et
se

ria
l

M
od

bu
s

vi
a

la
dd

er
 ro

ut
in

e
DH

-4
85

Et
he

rN
et

/IP
Co

nt
ro

lN
et

De
vi

ce
N

et
se

ria
l

M
od

bu
s

vi
a

la
dd

er
 ro

ut
in

e
DH

-4
85

in
te

gr
at

ed
 m

ot
io

n
su

pp
or

t
SE

RC
OS

 in
te

rfa
ce

an
al

og
 in

te
rfa

ce
hy

dr
au

lic
 in

te
rfa

ce

no
t a

pp
lic

ab
le

SE
RC

OS
 in

te
rfa

ce
an

al
og

 in
te

rfa
ce

no
t a

pp
lic

ab
le

1
fu

ll
se

rv
o

1
fe

ed
ba

ck
 a

xi
s

m
ou

nt
in

g
an

d
/o

r
in

st
al

la
tio

n
op

tio
ns

17
56

 c
ha

ss
is

pa
ne

l m
ou

nt
DI

N
 ra

il
no

ne
pa

ne
l m

ou
nt

DI
N

 ra
il

em
be

dd
ed

 in
 P

ow
er

Fl
ex

 7
00

S

pr
og

ra
m

m
in

g
la

ng
ua

ge
s

•
re

la
y

la
dd

er
•

st
ru

ct
ur

ed
 te

xt
•

fu
nc

tio
n

bl
oc

k
•

se
qu

en
tia

l f
un

ct
io

n
ch

ar
t

•
re

la
y

la
dd

er
•

st
ru

ct
ur

ed
 te

xt
•

fu
nc

tio
n

bl
oc

k
•

se
qu

en
tia

l f
un

ct
io

n
ch

ar
t

•
re

la
y

la
dd

er
•

st
ru

ct
ur

ed
 te

xt
•

fu
nc

tio
n

bl
oc

k
•

se
qu

en
tia

l f
un

ct
io

n
ch

ar
t

•
ex

te
rn

al
 ro

ut
in

es

•
re

la
y

la
dd

er
•

st
ru

ct
ur

ed
 te

xt
•

fu
nc

tio
n

bl
oc

k
•

se
qu

en
tia

l f
un

ct
io

n
ch

ar
t

•
re

la
y

la
dd

er
•

st
ru

ct
ur

ed
 te

xt
•

fu
nc

tio
n

bl
oc

k
•

se
qu

en
tia

l f
un

ct
io

n
ch

ar
t

Preface

Designing Logix5000 Systems

Introduction This reference manual provides guidelines you can follow to optimize
your system. This manual also provides system information you need
to make system design choices. As you read this manual:

In addition to the controller-specific topics covered in each chapter,
the back of this manual includes a:

• glossary of commonly used terms

• list of related publications

This manual is meant for experienced Logix-system programmers. The
information in this manual is presented with the assumption that the
reader understands how to implement the guidelines. The list of
related publications at the back of the manual identifies resources you
can use for more details on how to implement the guidelines.

This symbol: Indicates:

guidelines you should follow

programming practices that can improve system performance

things you can do

considerations you should know when making design choices

system information that can affect system performance

things you should know
i Publication 1756-RM094A-EN-P - May 2004

ii Designing Logix5000 Systems
Important User Information Solid state equipment has operational characteristics differing from those of
electromechanical equipment. Safety Guidelines for the Application,
Installation and Maintenance of Solid State Controls (Publication SGI-1.1
available from your local Rockwell Automation sales office or online at
http://www.ab.com/manuals/gi) describes some important differences
between solid state equipment and hard-wired electromechanical devices.
Because of this difference, and also because of the wide variety of uses for
solid state equipment, all persons responsible for applying this equipment
must satisfy themselves that each intended application of this equipment is
acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for
indirect or consequential damages resulting from the use or application of
this equipment.

The examples and diagrams in this manual are included solely for illustrative
purposes. Because of the many variables and requirements associated with
any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to
use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without
written permission of Rockwell Automation, Inc. is prohibited.

Throughout this manual we use notes to make you aware of safety
considerations.

WARNING
Identifies information about practices or circumstances
that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property
damage, or economic loss.

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

ATTENTION Identifies information about practices or circumstances
that can lead to personal injury or death, property
damage, or economic loss. Attentions help you:

• identify a hazard

• avoid a hazard

• recognize the consequence

SHOCK HAZARD Labels may be located on or inside the drive to alert
people that dangerous voltage may be present.

BURN HAZARD Labels may be located on or inside the drive to alert
people that surfaces may be dangerous temperatures.
Publication 1756-RM094A-EN-P - May 2004

Table of Contents

Chapter 1
Logix5000 Controller Resources Introduction. 1-1

Using Connections for Communications . 1-3
Determining Total Connection Requirements. 1-5

Chapter 2
Dividing Logic into Tasks, Programs,
and Routines

Introduction. 2-1
Deciding When to Use Tasks, Programs, and Routines. 2-2
Specifying Task Priorities . 2-3
Managing User Tasks . 2-5
Factors that Affect Task Execution . 2-6
Configuring a Continuous Task. 2-8
Configuring a Periodic Task . 2-8
Configuring an Event Task . 2-8
Guidelines for Configuring an Event Task . 2-9
Selecting a System Overhead Percentage. 2-10
Managing the System Overhead Timeslice Percentage 2-11
Developing Application Code in Routines . 2-12
Programming Methods . 2-13
Controller Prescan of Logic. 2-14
Controller Postscan of SFC Logic. 2-14

Chapter 3
Addressing Data Introduction. 3-1

Guidelines for Data Types . 3-2
Arrays . 3-3
Guidelines for Arrays . 3-4
Indirect Addressing of Arrays . 3-5
Guidelines for Array Indexes . 3-6
Prescan of an Array Index . 3-6
Guidelines for User-Defined Structures . 3-7
Selecting a Data Type for Bit Tags . 3-8
Serial Bit Addressing . 3-9
Guidelines for String Data Types. 3-10
PLC-5/SLC 500 Access of Strings . 3-10
Configuring Tags . 3-11
Guidelines for Base Tags . 3-12
Creating Alias Tags. 3-13
Guidelines for Data Scope . 3-13

Chapter 4
Sharing Tag Data with Other Controllers
(Produced and Consumed Tags)

Introduction. 4-1
Guidelines for Creating Produced and Consumed Tags 4-2
Guidelines for Specifying an RPI Rate . 4-3
Guidelines for Managing Connections for Produced and Consumed Tags 4-3
Configuring an Event Task Based on a Consumed Tag 4-3
Comparing Messages and Produced/Consumed Tags. 4-4
1 Publication 1756-RM094A-EN-P - May 2004

Table of Contents 2
Chapter 5
Designing Networks Introduction. 5-1

Select a Network . 5-1
EtherNet/IP Network Topology. 5-2
Guidelines for EtherNet/IP . 5-3
ControlNet Network Topology . 5-4
Guidelines for ControlNet. 5-5
DeviceNet Network Topology. 5-6
Guidelines for DeviceNet . 5-7

Chapter 6
Communicating with I/O Introduction. 6-1

Buffering I/O Data . 6-1
Guidelines for Specifying an RPI Rate for I/O Modules 6-2
Communication Formats for I/O Modules . 6-3
Guidelines for Managing I/O Connections. 6-4
Guidelines for Managing I/O Connections (continued) 6-5
Creating Tags for I/O Data . 6-6
Controller Ownership. 6-7

Chapter 7
Communicating with Other Devices Introduction. 7-1

Caching Messages . 7-2
Message Buffers . 7-2
Guidelines for Messages . 7-4
Guidelines for Managing Message Connections 7-5
Guidelines for Block-Transfer Messages . 7-6
Mapping Tags . 7-6

Chapter 8
Optimizing an Application for Motion
Control

Introduction. 8-1
Coarse Update Rate . 8-1
Axis Limits . 8-2
Performance Limits. 8-2
Motion Event Task Triggers . 8-3

Chapter 9
Optimizing an Application for Use with
HMI

Introduction. 9-1
Guidelines for HMI Applications . 9-2
Comparison of RSView32 and RSView Enterprise 9-2
How RSLinx Software Communicates with Logix5000 Controllers 9-3
Guidelines for RSLinx Software . 9-4
Comparison of RSLinx Classic and RSLinx Enterprise 9-5
Guidelines for Configuring Controller Tags . 9-6

Chapter 10
Optimizing an Application for Process
Control

Introduction. 10-1
Comparison of PID and PIDE Instructions . 10-1
Guidelines for Programming PID Loops . 10-2
Advanced Process Instructions . 10-3
Faceplates . 10-3
Publication 1756-RM094A-EN-P - May 2004

Chapter 1

Logix5000 Controller Resources

Introduction Depending on the controller, resources are divided differently:

• The Logix CPU executes application code and messages.

• The backplane CPU communicates with I/O and sends/receives
data from the backplane. This CPU operates independently from
the Logix CPU, so it sends and receives I/O information
asynchronous to program execution.

These controllers have a single CPU that performs all operations.
Isolated tasks perform I/O and communications and interact with
networks. These tasks simulate the backplane CPU.

Logic and Data Memory

Logix
CPU

Backplane
CPU

I/O Memory

program source code

tag data

RSLinx tag group lists

I/O data

I/O force tables

message buffers

produced/consumed tags

ControlLogix controllers - memory is separated into two, isolated sections

Logic, Data, and I/O Memory

Logix
CPU

program source code

tag data

RSLinx tag group lists

I/O data

I/O force tables

message buffers

produced/consumed

I/O task
comms

task

CompactLogix, FlexLogix, and DriveLogix controllers - memory is in one, contiguous section

For this controller: The I/O task is priority: The communications task is priority:

CompactLogix, FlexLogix, and DriveLogix 6 12
1 Publication 1756-RM094A-EN-P - May 2004

1-2 Logix5000 Controller Resources
The SoftLogix controller has a single CPU that works in conjunction
with the Windows operating system to perform all operations. Rather
than using controller priority levels for I/O and communications tasks,
the SoftLogix controller uses Windows priority levels for these tasks.

For all controllers, memory is used at run time for:

• message processing to buffer incoming and outgoing messages

• RSLinx data handling to store tag groups

• online edits to store edit rungs

• graphical trends to buffer data

Estimating memory use

The following equations provide an estimate of the memory needed
for a controller.

Controller tasks _____ * 4000 = _____ bytes (minimum 1 needed)
Discrete I/O points _____ * 400 = _____ bytes
Analog I/O points _____ * 2600 = _____ bytes

DeviceNet modules1 _____ * 7400 = _____ bytes

Other communication modules2_____ * 2000 = _____ bytes
Motion axis _____ * 8000 = _____ bytes

 Total = _____ bytes

1The first DeviceNet module is 7400 bytes. Additional DeviceNet modules are 5800 bytes each.

2Count all the communication modules in the system, not just those in the local chassis. This includes device
connection modules, adapter modules, and ports on PanelView terminals.

Reserve 20-30% of the controller memory to accommodate growth.

Logic, Data, and I/O Memory

Logix
CPU

program source code

tag data

RSLinx tag group lists

I/O data

I/O force tables

message buffers

produced/consumed

SoftLogix controllers - memory is in one, contiguous section

Windows
operating

system

For this controller: The I/O task is: The communications task is:

SoftLogix Windows priority 16 (Idle) Windows priority 16 (Idle)
Publication 1756-RM094A-EN-P - May 2004

Logix5000 Controller Resources 1-3
RSLinx use of Logix5000 controller memory

The amount of memory RSLinx needs depends on the type of data
RSLinx reads. The following equations provide an estimate of the
memory needed for RSLinx communications.

RSLinx overhead
(per connection) _____ * 1345 = _____ bytes (4 connections by default)
Individual tags _____ * 45 = _____ bytes
Arrays / structures _____ * 7 = _____ bytes

 Total = _____ bytes

Consolidating tags into an array or a structure reduces the
communications overhead and the number of connections needed to
obtain the data.

PLC/SLC memory comparison

The Logix5000 controllers used compiled instructions to provide faster
execution times than PLC or SLC processors. The compiled
instructions use more memory when compared to the instructions in
PLC and SLC processors.

If you have a PLC/SLC program, you can estimate the number of bytes
it will take in a Logix5000 controller by:

number PLC/SLC words ∗ 18 = number of Logix5000 bytes

Using Connections for
Communications

A Logix5000 controller uses a connection to establish a
communication link between two devices. Connections can be:

• controller to local I/O modules or local communication modules

• controller to remote I/O or remote communication modules

• controller to remote I/O (rack optimized) modules

For more information on connections for I/O, see Chapter 6
“Communicating with I/O.”

• produced and consumed tags

For more information, see Chapter 4, “Sharing Tag Data with
Other Controllers.”

• messages

For more information, see Chapter 7 “Communicating with
Other Devices.”

• access to RSLogix 5000 programming software

• RSLinx software access for HMI or other software applications
Publication 1756-RM094A-EN-P - May 2004

1-4 Logix5000 Controller Resources
These controllers support:

The limit of connections may ultimately reside in the communication
module you use for the connection. If a message path routes through
a communication module, the connection related to the message also
counts towards the connection limit of that communication module.

Controller: Number of Connections:

ControlLogix

SoftLogix

250

1769-L31, -L32E, -L35E CompactLogix

DriveLogix

FlexLogix

100

1769-L20, -L30 CompactLogix 17

For this controller: This communication device: Supports this number of connections:

ControlLogix 1756-CNB 64 connections
depending on RPI, recommend using only 48 connections
(any combination of scheduled and message connections)

1756-ENBT 128 connections
(all connections are message connections)

CompactLogix 1769-L32E, -L35E 32 connections (over EtherNet/IP only)

FlexLogix

PowerFlex 700S with DriveLogix

1788-CNx, -CNxR 32 connections
depending on RPI, as many as 22 connections can
be scheduled

The remaining connections (or all 32, if you have no
scheduled connections) can be used for message
connections

1788-ENBT 32 connections
(all 32 connections are message connections)

SoftLogix5800 1784-PCICS 128 connections
127 of which can be scheduled connections
Publication 1756-RM094A-EN-P - May 2004

Logix5000 Controller Resources 1-5
Determining Total
Connection Requirements

The total connections for a Logix5000 controller include both local
and remote connections. Tallying local connections is not an issue for
FlexLogix or CompactLogix controllers because both support the
maximum number of modules allowed in their systems. The
ControlLogix and SoftLogix controllers support more communication
modules than the other controllers, so you must tally local
connections to make sure you stay within the 250 connection limit.
Use this table to tally local connections.

The communication module(s) you select determines how many
remote connections are available for I/O and information. Use this
table to tally remote connections:

Connection Type: Device
Quantity: x

Connections
per Module: =

Total
Connections:

local I/O module (always a direct connection) x 1 =

motion servo module x 3 =

ControlNet communication module x 0 =

EtherNet/IP communication module x 0 =

DeviceNet communication module x 2 =

DH+/Remote I/O communication module x 1 =

RSLogix 5000 programming software access to controller x 1 =

total

Connection Type: Device
Quantity: x

Connections
per Module: =

Total
Connections:

remote ControlNet communication module
configured as a direct (none) connection
configured as a rack-optimized connection

x
0 or
1

=

distributed I/O module over ControlNet (direct connection) x 1 =

remote EtherNet/IP communication module
configured as a direct (none) connection
configured as a rack-optimized connection

x
0 or
1

=

distributed I/O module over EtherNet/IP (direct connection) x 1 =

remote device over DeviceNet
(accounted for in rack-optimized connection for local
DeviceNet module)

x 0 =

other remote communication adapter x 1 =

produced tag and first consumer

each additional consumer

x 1

1

=

consumed tag x 1 =

connected message (CIP Data Table Read/Write and DH+) x 1 =

block-transfer message x 1 =

RSLinx software access for HMI or other software applications x 4 =

RSLinx Enterprise software for HMI or other software applications x 5 =

total
Publication 1756-RM094A-EN-P - May 2004

1-6 Logix5000 Controller Resources
Notes:
Publication 1756-RM094A-EN-P - May 2004

Chapter 2

Dividing Logic into Tasks, Programs,
and Routines

Introduction The controller operating system is a preemptive multitasking system
that is IEC 61131-3 compliant. This environment provides:

A task provides scheduling and priority information for a set of one or
more programs. You can configure tasks as either continuous,
periodic, or event.

A task can have as many as 32 programs, each with its own routines
and program-scoped tags. Once a task is triggered (activated), all the
programs assigned to the task execute in the order in which they are
listed in the Controller Organizer.

Programs are useful for projects developed by multiple programmers.
During development, the code in one program that makes use of
program-scoped tags, can be duplicated in a second program and
minimize the possibility of tag names colliding.

Routines contain the executable code. Each program has a main
routine that is the first routine to execute within a program. Use logic,
such as the Jump to Subroutine (JSR) instruction, to call other routines.
You can also specify an optional program fault routine.

See “Developing Application Code in Routines” on page 2-12 for
information on selecting programming languages and how the
controller prescans and postscans logic.

tasks to configure
controller execution

programs to group data
and logic

routines to encapsulate
executable code written in a

single programming language
1 Publication 1756-RM094A-EN-P - May 2004

2-2 Dividing Logic into Tasks, Programs, and Routines
Deciding When to Use
Tasks, Programs, and
Routines

Use these considerations to determine when to use a task, program or
routine:

Comparison: Task: Program: Routine:

Quantity available varies by controller (4, 8, or 32) 32 programs per task unlimited number of routines per
program

Function determines how and when code
will be executed

organizes groups of routines that
need to share a common data area

contains executable code (relay
ladder, function block diagram,
sequential function chart, or
structured text) that controls the
machine

Use • most code should reside in
a continuous task

• use a periodic task for
slower processes or when
time-based operation is
critical

• use an event task for
operations that require
synchronization to a specific
event

• put major equipment pieces
or plant cells into isolated
programs

• use programs to isolate
different programmers or
create reusable code

• configurable execution
order within a task

• isolate machine or cell
functions in a routine

• use the appropriate
language for the process

• modularize code into
subroutines that can be
called multiple times

Considerations • a high number of tasks can
be difficult to debug

• may need to disable output
processing on some tasks to
improve performance

• tasks can be inhibited to
prevent execution

• data spanning multiple
programs must go into
controller-scoped area

• listed in the Controller
Organizer in the order of
execution

• subroutines with multiple
calls can be difficult to
debug

• data can be referenced from
program-scoped and
controller-scoped areas

• calling a large number of
routines impacts scan time

• listed in the Controller
Organizer as Main, Fault,
and then alphabetically
Publication 1756-RM094A-EN-P - May 2004

Dividing Logic into Tasks, Programs, and Routines 2-3
Specifying Task Priorities Each task in the controller has a priority level that determines which
task executes when multiple tasks are triggered. A higher priority task
(such as 1) interrupts any lower priority task (such as 15). The
continuous task has the lowest priority and is always interrupted by a
periodic or event task.

If a periodic or event task is executing when another is triggered and
both tasks are at the same priority level, the tasks timeslice execution
time in 1 msec increments until one of the tasks completes execution

The Logix5000 controller has these types of tasks.

This Logix5000 controller: Supports this many user tasks: And has this many priority levels:

ControlLogix 32 15

1769-L35E CompactLogix 8 15

1769-L32E CompactLogix 6 15

1769-L20, -L30, -L31 CompactLogix 4 15

FlexLogix 8 15

PowerFlex 700A with DriveLogix 8 15

SoftLogix5800 32 3
Publication 1756-RM094A-EN-P - May 2004

2-4 Dividing Logic into Tasks, Programs, and Routines
Priority: User Task: Description:

Highest

Lowest

na CPU overhead - serial port and general CPU operations

na Motion planner - executed at coarse update rate

na Redundancy task - communications to 1757-SRM in redundant systems

na Trend data collection - high-speed collection of trend data values

Priority 1 Event/Periodic na

Priority 2 Event/Periodic na

Priority 3 Event/Periodic na

Priority 4 Event/Periodic na

Priority 5 Event/Periodic na

Priority 6 Event/Periodic CompactLogix and FlexLogix controllers process I/O as a periodic task
based on the chassis RPI setting

Priority 7 Event/Periodic na

Priority 8 Event/Periodic na

Priority 9 Event/Periodic na

Priority 10 Event/Periodic na

Priority 11 Event/Periodic na

Priority 12 Event/Periodic DriveLogix communications to drives.

CompactLogix and FlexLogix communications and scheduled connection
maintenance

Priority 13 Event/Periodic na

Priority 14 Event/Periodic na

Priority 15 Event/Periodic na

Continuous Message handler - based on system overhead timeslice
Publication 1756-RM094A-EN-P - May 2004

Dividing Logic into Tasks, Programs, and Routines 2-5
Managing User Tasks You can configure these user task:

The user tasks you create show up in the Tasks folder of the
controller. These pre-defined, system tasks do not show up in the
Tasks folder and they do not count toward the task limit of the
controller:

• motion planner

• I/O processing

• system overhead

• output processing

If you want logic to execute: Then use a: Description:

all of the time continuous task The continuous task runs in the background. Any CPU time not allocated to
other operations or tasks is used to execute the continuous task.

• The continuous task runs all the time. When the continuous task
completes a full scan, it restarts immediately.

• A project does not require a continuous task. If used, there can be
only one continuous task.

• at a constant period
(e.g., every 100 ms)

• multiple times within the
scan of your other logic

periodic task A periodic task performs a function at a specific time interval. Whenever the
time for the periodic task expires, the periodic task:

• interrupts any lower priority tasks

• executes one time

• returns control to where the previous task left off

immediately when an event
occurs

event task An event task performs a function only when a specific event (trigger) occurs.
Whenever the trigger for the event task occurs, the event task:

• interrupts any lower priority tasks

• executes one time

• returns control to where the previous task left off

See “Configuring an Event Task“on page 2-8 for the triggers for an event task.
Some Logix5000 controllers do not support all triggers.
Publication 1756-RM094A-EN-P - May 2004

2-6 Dividing Logic into Tasks, Programs, and Routines
Factors that Affect Task Execution

The motion planner interrupts all other tasks, regardless of their priority.

• The number of axes and coarse update period for the motion group affect how long
and how often the motion planner executes.

• If the motion planner is executing when a task is triggered, the task waits until the
motion planner is done.

• If the coarse update period occurs while a task is executing, the task pauses to let
the motion planner execute.

CompactLogix, FlexLogix, DriveLogix, and SoftLogix controllers use a dedicated periodic task
to process I/O data. This I/O task:

• For CompactLogix, FlexLogix, and DriveLogix, operates at priority 6.
For SoftLogix, operates at Windows priority 16 (Idle).

• Higher-priority tasks take precedence over the I/O task and can impact processing.

• Executes at the fastest RPI you have scheduled for the system.

• Executes for as long as it takes to scan the configured I/O modules.
• For local I/O, updates also occur at the end of each task.

System overhead is the time that the controller spends on message communication and
background tasks.

• Message communication is any communication that you do not configure through the
I/O configuration folder of the project, such as MSG instructions.

• Message communication occurs only when a periodic or event task is not running. If
you use multiple tasks, make sure that their scan times and execution intervals leave
enough time for message communication.

• System overhead interrupts only the continuous task.

• The system overhead time slice specifies the percentage of time (excluding the time
for periodic or event tasks) that the controller devotes to message communication.

• The controller performs message communication for up to 1 ms at a time and then
resumes the continuous task.

• Adjust the update rates of the tasks as needed to get the best trade-off between
executing your logic and servicing message communication.

At the end of a task, the controller performs overhead operations (output processing) for the
output modules in your system. This output processing may effect the update of the I/O
modules in your system. You can turn off output processing for a specific task, which reduces
the elapsed time of that task.

If you have too many tasks, then:

• The continuous task may take too long to complete.

• Other tasks may experience overlaps. If a task is interrupted too frequently or too
long, it may not complete its execution before it is triggered again.

• Controller communications might be slower.
• If your application is designed for data collection, try to avoid multiple tasks.

Switching between multiple tasks limits communication bandwidth.

motion planner

See also “Optimizing an Application for
Motion Control“on page 8-1.

I/O processing

system overhead

See also “Selecting a System Overhead
Percentage“on page 2-10.

output processing

too many tasks
Publication 1756-RM094A-EN-P - May 2004

Dividing Logic into Tasks, Programs, and Routines 2-7
The following example depicts the execution of a project with
these tasks:

Task: Priority: Period: Execution time: Duration:

motion planner n/a 8 ms (course update rate) 1 ms 1 ms

event task 1 1 n/a 1 ms 1 to 2 ms

periodic task 1 2 12 ms 2 ms 2 to 4 ms

I/O task—n/a to ControlLogix and
SoftLogix controllers

7 5 ms (fastest RPI) 1 ms 1 to 5 ms

system overhead n/a time slice = 20% 1 ms 1 to 6 ms

continuous task n/a n/a 20 ms 48 ms

Legend: Task executes. Task is interrupted (suspended).

motion
planner

event
task 1

periodic
task 1

I/O task

system
overhead

continuous
task 5 10 15 20 25 30 35 40 45 50

Description:

Initially, the controller executes the motion planner and the I/O task (if one exists).

After executing the continuous task for 4 ms, the controller triggers the system overhead.

The period for periodic task 1 expires (12 ms), so the task interrupts the continuous task.

After executing the continuous task again for 4 ms, the controller triggers the system overhead.

The triggers occur for event task 1.

Event task 1 waits until the motion planner is done.

Lower priority tasks experience longer delays.

The continuous task automatically restarts.

1 2 4 5 63

1

2

3

4

5

6

Publication 1756-RM094A-EN-P - May 2004

2-8 Dividing Logic into Tasks, Programs, and Routines
Configuring a
Continuous Task

The continuous task is created automatically when you open an
RSLogix 5000 project. A continuous task is similar to how logic
executes on PLC-5 and SLC 500 processors. A Logix5000 controller
supports one continuous task, but a continuous task is not required.
You can configure whether the task updates output modules at the
end of the continuous task. You can change the continuous task to
either a periodic or event task.

The CPU timeslices between the continuous task and system
overhead. Each task switch between user task and system overhead
takes additional CPU time to load and restore task information. See
“Selecting a System Overhead Percentage” on page 2-10.

Configuring a Periodic Task A periodic task executes automatically based on a preconfigured
interval. This task is similar to selectable timed interrupts in PLC-5 and
SLC 500 processors. You can configure whether the task updates
output modules at the end of the periodic task. After the task
executes, it does not execute again until the configured time interval
has elapsed.

If your application has a lot of communications (such as message
instructions or RSLinx communications), use a periodic task rather
than a continuous task. This avoids the overhead associated with task
switching, which can improve performance.

Configuring an Event Task An event task executes automatically based on a preconfigured event
occurring. You can configure whether the task updates output
modules at the end of the task. After the task executes, it does not
execute again until the configured event occurs again. Each event task
requires a specific trigger that defines when the task is to execute. You
can select from:

Use this trigger: Description:

Module Input Data State Change The input module (digital or analog) triggers the event task based on the change of state
(COS) configuration for the module. Enable COS for only one point on the module. If you
enable COS for multiple points, a task overlap of the event task may occur.

The ControlLogix sequence of events modules (1756-IB16ISOE, 1756-IH16ISOE) use the
Enable CST Capture feature instead of COS.

Consumed Tag Only one consumed tag can trigger a specific event task. Use an IOT instruction in the
producing controller to signal the production of new data.

Axis Registration 1 or 2 A registration input triggers the event task.

Axis Watch A watch position triggers the event task.

Motion Group Execution The coarse update period for the motion group triggers the execution of both the motion
planner and the event task. Because the motion planner interrupts all other tasks, it
executes first.

EVENT instruction Multiple EVENT instructions can trigger the same task.
Publication 1756-RM094A-EN-P - May 2004

Dividing Logic into Tasks, Programs, and Routines 2-9
For more information on event tasks, see:

• Logix5000 Controllers Common Procedures Programming
Manual, publication 1756-PM001

• Using Event Tasks with Logix5000 Controllers, LOGIX-WP003

Guidelines for Configuring an Event Task

Placing the I/O module in a remote chassis adds additional network communications and
processing to the response time.

All inputs on a module trigger a single event, so using multiple bits increases the chance of a
task overlap. Configure the module to detect change-of-state on the trigger input and turn off
the other bits.

If the priority of the event task is lower than a periodic task, the event task will have to wait
for the periodic task to complete execution.

Increasing the number of event tasks reduces the available CPU bandwidth and increases
the chances of task overlap.

Additional considerations for event tasks

Place the I/O module being used
to trigger an event in the same
chassis as the controller

Limit events on digital inputs to
a single input bit on a module

Set the priority of the event task
as the highest priority on the
controller

Limit the number of event tasks

Consideration: Description:

amount of code in the event task Each logic element (rung, instruction, structured text construct, etc…) adds to scan time.

task priority If the event task is not the highest priority task, a higher priority task may delay or interrupt
the execution of the event task.

CPS and UID instructions If one of these instructions are active, the event task cannot interrupt the currently
executing task. (The task with the CPS or UID.)

communication interrupts The following actions interrupt a task, regardless of the priority of the task:

• arrival of scheduled module and consumed tag information via the backplane

• serial port communication

motion planner The motion planner takes precedence over an event task.

trends Trend data collection takes precedence over an event task.
Publication 1756-RM094A-EN-P - May 2004

2-10 Dividing Logic into Tasks, Programs, and Routines
Selecting a System
Overhead Percentage

The system overhead timeslice specifies the percentage of continuous
task execution time that is devoted to communication and background
functions. System overhead functions include:

• communicating with programming and HMI devices (such as
RSLogix 5000 software)

• responding to messages

• sending messages

• serial port message and instruction processing

The controller performs system overhead functions for up to 1 ms at a
time. If the controller completes the overhead functions in less than
1 ms, it resumes the continuous task. The following chart compares a
continuous and periodic task.

The Logix5000 CPU timeslices between the continuous task and
system overhead. Each task switch between user task and system
overhead takes additional CPU time to load and restore task
information. You can calculate the continuous task interval as:

ContinuousTime=(100/SystemOverheadTimeSlice%) - 1

Continuous task restarts

Periodic task restarts

Continuous task
10% CPU Overhead

Continuous task
25% CPU overhead

Periodic task
CPU Overhead

Example: Description:

Continuous task
10% CPU overhead

In the top example, the system overhead timeslice is set to 10%. Given 40 msec of code to
execute, the continuous task completes the execution in 44 msec. During a 60 msec
timespan, the controller is able to spend 5 msec on communications processing.

Continuous task
25% CPU overhead

By increasing the system overhead timeslice to 25%, the controller completes the
continuous task scan in 57 msec and spends 15 msec of a 60 msec timespan on
communications processing.

Periodic task Placing the same code in a periodic task yields even more time for communications
processing. The bottom example assumes the code is in a 60 msec periodic task. The code
executes to completion and the goes dormant until the 60 msec, time-based trigger occurs.
While the task is dormant, all CPU bandwidth can focus on communications. Since the code
only takes 40 msec to execute, the controller can spend 20 msec on communications
processing. Depending on the amount of communications to process during this 20 msec
window, it can be delayed as it waits for other modules in the system to process all the
data that was communicated.
Publication 1756-RM094A-EN-P - May 2004

Dividing Logic into Tasks, Programs, and Routines 2-11
Managing the System
Overhead Timeslice
Percentage

As the system overhead timeslice percentage increases, time allocated
to executing the continuous task decreases. If there are no
communications for the controller to manage, the controller uses the
communications time to execute the continuous task.

Increasing the system overhead timeslice percentage decreases execution time for the
continuous task while it increases communications performance.

Increasing the system overhead timeslice percentage also increases the amount of time it
takes to execute a continuous task - increasing overall scan time.

Individual applications may differ, but the overall impact on
communications and scan time remains the same. The above data is
based on a ControlLogix5555 controller running a continuous task
with 5000 tags (no arrays or user-defined structures).

impact on communications and
scan time

Program Scan
Time

Tags Per
Second

System Timeslice %

Ta
gs

 p
er

 S
ec

on
d

Pr
og

ra
m

 S
ca

n
Ti

m
e

in
 M

ill
is

ec
on

ds
Publication 1756-RM094A-EN-P - May 2004

2-12 Dividing Logic into Tasks, Programs, and Routines
Developing Application
Code in Routines

Each routine contains logic in one programming language. Choose a
programming language based on the application

In general, if a section of your code represents: Then use this language:

continuous or parallel execution of multiple operations (not sequenced) ladder logic

boolean or bit-based operations

complex logical operations

message and communication processing

machine interlocking

operations that service or maintenance personnel may have to interpret in order
to troubleshoot the machine or process.

servo motion control

continuous process and drive control function block diagram

loop control

calculations in circuit flow

high-level management of multiple operations sequential function chart (SFC)

repetitive sequences of operations

batch process

motion control sequencing (via sequential function chart with embedded
structure text)

state machine operations

complex mathematical operations structured text

specialized array or table loop processing

ASCII string handling or protocol processing
Publication 1756-RM094A-EN-P - May 2004

Dividing Logic into Tasks, Programs, and Routines 2-13
Programming Methods The capabilities of the Logix5000 controllers make different
programming methods possible. There are tradeoffs to consider when
selecting a programming method:

Write multiple copies of the code with different tag references.

Write one copy of code and use indexed references to data stored in
arrays.

Copy the values of an array into tags and reference these buffer tags
directly.

Inline duplication

• uses more memory

• fastest execution time because
all tag references are defined
before run time

• easiest to maintain because rung
animation matches tag values

• requires more time to create and
modify

Indexed routine

• one copy of code is faster to
develop

• slowest execution time because
all tag references are calculated
at run time

• can be difficult to maintain
because the data monitor is not
synchronized to execution

The JSR instruction
passes the index

Each indexed reference
adds to scan time

Buffered routine

• one copy operation can occur
faster than multiple index offsets

• eliminates the need to calculate
array offsets at run time

• the amount of code increases,
but so do the benefits

• can be difficult to maintain
because the data monitor is not
synchronized to execution

The JSR instruction
passes all control
instance data

A user-defined structure
consolidates control data

Direct reference to a
local copy of data
Publication 1756-RM094A-EN-P - May 2004

2-14 Dividing Logic into Tasks, Programs, and Routines
Controller Prescan of Logic On power-up, the controller prescans logic to initialize instructions.
The controller resets all state-based instructions, such as outputs
(OTE) and timers (TON). Some instructions also perform operations
during prescan. For example, the ONSR instructions turns off the
storage bit. For information on prescan, see:

• Logix5000 Controllers General Instructions Reference Manual,
publication 1756-RM003

• Logix5000 Controllers Common Procedures Programming
Manual, publication 1756-PM001

• Logix5000 Controllers Process Control and Drives Instructions
Reference Manual, publication 1756-RM006

During prescan, input values are not current and outputs are not
written.

The controller resets non-retentive I/O and internal values.

In addition to resetting non-retentive I/O and internal values, the controller clears the
EnableIn parameter for every function block diagram.

The controller resets bit tags and forces numeric tags to zero (0).

Use the bracketed assignment operator ([:=]) to force a value to be reset during prescan.

If you want a tag left in its last state, use the non-bracketed assignment operator (:=).

Embedded structured text follows the same rules as listed above.

Array index values can fault the controller during prescan. If an array index value is larger
than the dimension of the array, the controller will detect a major fault during prescan. To
avoid this, make sure the index is always set properly or use a fault routine to handle this
error during prescan. See “Prescan of an Array Index” on page 3-6.

Controller Postscan of
SFC Logic

SFCs support an automatic reset option that performs a postscan of
the actions associated with a step once a transition indicates that the
step is completed. Also, every Jump to Subroutine (JSR) instruction
causes the controller to postscan the called routine. During this
postscan:

• output energize (OTE) instructions are turned off and
non-retentive timers are reset.

• in structured text code, use the bracketed assignment operator
([:=]) to have tags reset

• in structured text code, use the non-bracketed assignment
operator (:=) to have tags left in their last state.

affects of prescan on relay
ladder logic

affects of prescan on function
block diagram logic

affects of prescan on structured
text logic

affects of prescan on sequential
function chart logic

affects of prescan on array
indexed values
Publication 1756-RM094A-EN-P - May 2004

Chapter 3

Addressing Data

Introduction Logix5000 controllers support IEC 61131-3 atomic data types, such as
BOOL, SINT, INT, DINT, and REAL. The controllers also support
compound data types, such as arrays, predefined structures (such as
counters and timers) and user-defined structures.

atomic data type
(BOOL, SINT, INT, DINT, REAL)

Benefits: Considerations:

• individual names

• no limit to the number of tags

• Tag Editor and Data Monitor can
filter individual tags and display any
references

• always listed alphabetically in the
Tag Editor and Data Monitor

• full alias tag support (both the base
tag and its bits)

• can be added when programming
online

• each tag uses 32 bits of memory

• require more communications
overhead and, potentially, more
controller memory than compound
data types

• can only change a tag’s data type
when programming offline

• the root tag is listed alphabetically
in the Tag Editor and Data Monitor,
but the structure members are listed
in the order in which they were
defined in the structure

compound data type
(array, structure)

Benefits: Considerations:

• allow for specific names and
user-defined organization

• consolidates information in
controller memory

• optimizes communications time and
memory impact

• arrays can be dynamically indexed

• can create new arrays when
programming online

• alias support for user-defined
structures, members of an array, and
bits of a member

• 2 Mbyte data limit per user-defined
structure or array

• user-defined structures are padded
to enforce 32-bit data alignment

• alias tags cannot point to the root
tag of an array

• Tag Editor and Data Monitor filtering
limited

• can only create or change a
user-defined structure when
programming offline

• can only change an array when
programming offline
1 Publication 1756-RM094A-EN-P - May 2004

3-2 Addressing Data
The Logix CPU reads and manipulates 32-bit data values. All data
starts at 32-bit offsets, so the minimum memory allocation for a tag is
4 bytes. When you create a standalone tag that stores data that is less
than 4 bytes, the controller allocates 4 bytes, but the data only fills the
part it needs.

To manipulate SINT or INT data, the controller converts the values to
DINT values, performs the programmed manipulation, and then
returns the result to a SINT or INT value. This requires additional
memory and execution time when compared to using DINT values for
the same operation.

Guidelines for Data Types

The Logix5000 controllers perform DINT (32 bit) and REAL (32 bit) math operations. DINT
data types use less memory and execute faster than other data types. Use:

• DINT for most numeric values and array indexes

• REAL for manipulating floating-point, analog values

• SINT (8 bit) and INT (16 bit) primarily in user-defined structures or when
communicating with an external device that does not support DINT values

When using BOOL values, group them into DINT arrays to best use controller memory and to
make the bits accessible via FBC or DDT instructions.

Data type Bits

31 16 15 8 7 1 0

BOOL not used 0 or 1

SINT not used -128 to +127

INT not used -32,768 to +32767

DINT -2,147,483,648 to +2,147,483,647

REAL -3.40282347E38 to -1.17549435E-38 (negative values)

0

1.17549435E-38 to 3.40282347E38 (positive values)

Use DINT data types whenever
possible

SINT INT DINT REAL

memory reserved for a stand-alone tag 4 bytes 4 bytes 4 bytes 4 bytes

memory reserved for data in a user-defined structure 1 byte
(8-bit aligned)

2 bytes
(16-bit aligned)

4 bytes
(32-bit aligned)

4 bytes
(32-bit aligned)

memory used to access a tag in an ADD instruction 236 bytes 260 bytes 28 bytes 44 bytes

execution time on a 1756-L63 controller required to
perform an ADD instruction

3.31 µsec 3.49 µsec 0.26 µsec 1.45 µsec

Group BOOL values into arrays
Publication 1756-RM094A-EN-P - May 2004

Addressing Data 3-3
Arrays An array allocates a contiguous block of memory to store a specific
data type as a table of values.

• Tags support arrays in one, two, or three dimensions.

• User-defined structures can contain a single-dimension array as
a member of the structure.

The data type you select for an array determines how the contiguous
block of memory gets used.

This array: Stores data like: For example:

one dimension Tag name:

one_d_array

Type

DINT[7]

Dimension 0

7

Dimension 1

--

Dimension 2

--

total number of elements = 7
valid subscript range DINT[x] where x=0–6

two dimension Tag name:

two_d_array

Type

DINT[4,5]

Dimension 0

4

Dimension 1

5

Dimension 2

--

total number of elements = 4 ∗ 5 = 20
valid subscript range DINT[x,y] where x=0–3; y=0–4

three dimension Tag name:

three_d_array

Type

DINT[2,3,4]

Dimension 0

2

Dimension 1

3

Dimension 2

4

total number of elements = 2 ∗ 3 ∗ 4 = 24
valid subscript range DINT[x,y,z] where x=0–1; y=0–2, z=0–3

BOOL[96] = 12 bytes

BOOL arrays use 32-bit
increments of memory

SINT[10] = 12 bytes of memory (2 bytes unused)

INT[5] = 12 bytes of memory (2 bytes unused)

DINT[3] = 12 bytes and REAL[3] = 12 bytes

SINT arrays are padded to
use any left over bytes

INT arrays are padded to
use any left over bytes

DINT and REAL arrays use
4-byte increments of
memory
Publication 1756-RM094A-EN-P - May 2004

3-4 Addressing Data
Guidelines for Arrays

A subscript identifies an individual element within the array. A subscript starts at 0 and
extends to the number of elements minus 1 (zero based).

• Single-dimension arrays take less memory and execute faster than 2-dimension or
3-dimension arrays.

• Direct references to array elements execute faster than indexed references

• An array can be as large as 2 Mbytes

• If you create an array of structures, the memory for each element is allocated based
on the structure definition

The file instructions offer limited support for arrays. To work with array data, create a
user-defined structure with one array as a member of the structure. Then create an array tag
using the user-defined structure as its data type.

While SINT and INT arrays can compact more values into a given memory area, they require
additional memory and execution time for each instruction that references the array.

The maximum array size is 2 Mbytes. The software displays a warning if you try to create an
array that is too large. The software also displays a warning if an array is 1.5-2 Mbytes in
size, even though these sizes are valid.

You can create arrays of most
data types, except for AXIS,
MOTION_GROUP, and
MESSAGE data types

Type of Array Benefits: Considerations:

Single (1) dimension • better support by native file instructions

• fully supported in user-defined structures and
arrays

• smallest impact (execution time and memory)
for indexed references

• can create new arrays when programming
online

• multiple arrays cannot be indirectly
referenced like in PLC or SLC processors (i.e.,
N[N7:0]:5)

• BOOL arrays not directly supported by file
instructions

• can only be changed when programming
offline

Double (2) dimension

and

Triple (3) dimension

• can provide a more accurate data
representation for a physical system

• can emulate PLC file/word indirection with a
2 dimension array

• can create new arrays when programming
online

• larger impact (execution time and memory)
for indexed references

• file manipulation requires extra code in
addition to file instructions

• can only be changed when programming
offline

Nest arrays

Select the data type of the array
based on the data, as well as
the instructions that manipulate
that data

Limit arrays to 2 Mbytes of data
Publication 1756-RM094A-EN-P - May 2004

Addressing Data 3-5
Indirect Addressing
of Arrays

If you want an instruction to access different elements in an array, use
a tag in the subscript of the array (an indirect address). By changing
the value of the tag, you change the element of the array that your
logic references.

Directly referencing an element in an array (such as MyArray[20]), uses
less memory and executes faster than an indirect reference
(MyArray[MyIndex]). You can also indirectly address bits in a tag
(MyDint.[Index]).

If you use indirect addresses, use DINT tags because other data types
require conversion and execute slower. For each indexed access to
data, the controller recalculates the array index. If you access a
specific array element multiple times, copy the data out of the array
into a fixed tag and use that tag in subsequent logic.

You can also use an expression to specify the index value. For
example: MyArray[10 + MyIndex].

• An expression uses operators to calculate a value.

• The controller computes the result of the expression and uses it
as the index.

• Valid operators include:

When index equals 1, array[index] points here.

array[0] 4500

array[1] 6000

array[2] 3000

array[3] 2500

When index equals 2, array[index] points here.

Operator: Description: Optimal:

+ add DINT, REAL

- subtract/negate DINT, REAL

* multiply DINT, REAL

/ divide DINT, REAL

** exponent (x to y) DINT, REAL

ABS absolute value DINT, REAL

ACS arc cosine REAL

AND bitwise AND DINT

ASN arc sine REAL

ATN arc tangent REAL

COS cosine REAL

DEG radians to degrees DINT, REAL

FRD BCD to integer DINT

LN natural log REAL

LOG log base 10 REAL

MOD modulo-divide DINT, REAL

NOT bitwise complement DINT

OR bitwise OR DINT

RAD degrees to radians DINT, REAL

SIN sine REAL

SQR square root DINT, REAL

TAN tangent REAL

TOD integer to BCD DINT

TRN truncate DINT, REAL

XOR bitwise exclusive OR DINT

Operator: Description: Optimal:
Publication 1756-RM094A-EN-P - May 2004

3-6 Addressing Data
Guidelines for Array Indexes

By determining the number of elements in an array at run time, you can write reusable code
that adjusts itself to meet each instance where it is used.

Immediate value references to array elements are quicker to process and execute faster than
indexed references.

DINT tags execute the fastest. SINT, INT, and REAL tags require conversion code that can
add additional scan time to an operation.

The Logix5000 controller does not directly support the use of an array element as the index
to look up a value in another array. To work around this, you can create an alias to the
element and then use this as the index. Or copy the element to a base tag and use that base
tag as the index.

Prescan of an Array Index During prescan, the controller resets state based on instructions such
as outputs and timers. If you use calculated array indexes based on
program execution, an “Indexed address out of range” error occurs
because the program has not executed and the index was not
initialized. You can use a fault handler routine to address this:

• Place an unconditional rung with an OTE instruction referencing
an internal bit in the first program of the first task. During
prescan, the prescan bit will be turned off. During normal scan,
the prescan bit will be on at all times.

• “Indexed address out of range” error occurs and the prescan bit
is off, reset the error and continue.

See the Logix5000 Controllers Common Procedures Programming
Manual, publication 1756-PM001 for information and sample code to
handle faults.

Use the SIZE instruction to
determine the number of
elements in an array

Use immediate values to
reference array elements

Use DINT tags for array indexes

Avoid using array elements as
indexes

IMPORTANT This prescan condition no longer exists in controllers
with firmware revision 13 and greater. You do not
need to program a fault handler routine to handle
indexed address out-of-range errors.
Publication 1756-RM094A-EN-P - May 2004

Addressing Data 3-7
Guidelines for User-Defined
Structures

User-defined structures let you combine multiple data types into one
structure. All the elements in a structure align along 8-bit boundaries.

When you use the BOOL, SINT, or INT data types, place members that use the same data
type in sequence:

A Logix5000 controller aligns every data type along an 8-bit boundary for SINTs, a 16-bit
boundary for INTS, or a 32-bit boundary for DINTs and REALs. BOOLs also align on 8-bit
boundaries, but if they are placed adjacent to each other in a user-defined structure, they are
mapped so that they share the same byte.

If you include an array as a member, limit the array to a single dimension. Multi-dimension
arrays are not permitted in a user-defined structure.

If you include members that represent I/O devices, you must use logic to copy the data into
the members of the structure from the corresponding I/O tags.

Logix5000 controllers limit user-defined structures to 500 members. If you need more,
consider nesting structures within the main structure.

Produced and consumed tags are limited to 500 bytes over the backplane and 480 bytes if
over a network.

RSLinx can optimize user-defined structures that are less than 480 bytes.

Group members of the same
data type within a structure

Arrays within structures can
only be 1-dimension

I/O data used in structure must
be copied into the members

Limit user-defined structures to
500 members

Limit the size of user-defined
structures if they are to be
communicated
Publication 1756-RM094A-EN-P - May 2004

3-8 Addressing Data
Selecting a Data Type for
Bit Tags

Bits in a Logix5000 controller can exist as: BOOL tags, bits in a BOOL
array, bits in elements of a SINT, INT, DINT array, members of a
user-defined structure, or as bits in a SINT, INT, DINT member of a
user-defined structure.

Each tag accesses a specific bit. Each tag uses 4 bytes.

A BOOL array combines multiple bits into adjacent words (32-bit words).

A DINT combines multiple bits into adjacent words.

A user-defined structure combines multiple bits into adjacent, individually-named words.

BOOL tag

MyBit:BOOL
Benefits: Considerations:

• each bit has a specific tag • requires extra bandwidth to
communication

• uses more memory; 32-bits for
each tag

• cannot use FBC/DDT bit file
instructions

BOOL array

BitTable:BOOL[32]

Benefits: Considerations:

• consolidates multiple bits into a
single word

• better use of memory

• can address all bits in an array using
indirect addressing

• BOOL data type only supported by
bit instructions

• cannot use file instructions, copy
instructions, or DDT/FBC
instructions

DINT array

FaultTable:DINT[3]

Benefits: Considerations:

• consolidates multiple bits into a
single word

• file instructions, copy instructions,
and DDT/FBC instructions support
DINT arrays

• lets you access the bits by element
(word) and bit number

• requires extra planning to indirectly
address bits

• difficult to address bits in the array
using indirect addressing

user-defined structure

BitStructure
Bit1:BOOL
Bit2:BOOL

Fault:BitStructure

Benefits: Considerations:

• object based

• consolidates multiple bits into a
single word

• structures are not directly supported
by 3rd party MMI/EOI products
(RSView does support 32-bit tags
and structures)

• cannot use FBC/DDT bit file
instructions
Publication 1756-RM094A-EN-P - May 2004

Addressing Data 3-9
Serial Bit Addressing The BOOL “B” data table in the PLC-5 and SLC 500 processors
supports two addressing modes that can address the same bit:

The Logix5000 controller supports both of these addressing modes,
but you cannot use both to reference bits in the same array due to
conformance with the IEC 61131-3 standard. Choose the method that
best meets your application needs. You can copy data between arrays
using both methods.

You can also use an expression to indirectly reference a bit in a DINT
array using a serialized bit number. For example:

Tag

MyBits : DINT[10]
BitRef : DINT

EndTag

MOV(34, BitRef)

XIC(MyBits[BitRef / 32].[BitRef AND 31])

where:

The Diagnostic Detect (DDT) and File Bit Compare (FBC) instructions
provide a bit number as a result of their operation. These instructions
are limited to DINT arrays so you can use them to locate the bit
number returned from the example above.

Addressing mode: Description:

serial bit

In PLC-5 or SLC software, this addressing
mode is represented as “/Bit”

Serial bit addressing provides the ability to reference all bits as a contiguous list (array) of
bits. For example, if you wanted to reference the 3rd bit in the 2nd word of a “B” file, you
specify B3/18. This method similar to a BOOL array in a Logix5000 controller where you
would specify FaultBit[18].

word bit

In PLC-5 or SLC software, this addressing
mode is represented as “Word/Bit”

Word bit addressing identifies a bit within a specific word. For example, B3:1/2 is the
same as B3/18 from the serial bit example. This method is similar to accessing the bits of
a SINT, INT, DINT array in a Logix5000 controller where you would specify FaultTable[1].2.

This expression: Calculates the:

[BitRef / 32] element in the DINT array

Note: If the tag MyBits is an INT or SINT, the divisor would be 16 or 8, respectively.

[BitRef AND 31] bit within the element

Note: If the tag MyBits is an INT or SINT, the mask value would be 15 or 7, respectively.
Publication 1756-RM094A-EN-P - May 2004

3-10 Addressing Data
Guidelines for String
Data Types

String data types are structures that hold ASCII characters. The first
member of the structure defines the length of the string; the second
member is an array that holds the actual ASCII characters.

The default string data type can contain as many as 82 characters, but you can create
custom-length string data types to hold as many characters as needed.

These comparison instructions support string tags: EQU, NEQ, GRT, GEG, LES, LEQ, CMP.

These serial port instructions support string tags: ARD, ARL, AWA, AWT.

These string-handling instructions support string tags: STOD, DTOS, STOR, RTOS, CONCAT,
MID, FIND, DELETE, INSERT, UPPER, LOWER, SIZE.

These file instructions support string arrays: FAL, FFL, FFU, LFL, LFU, COP, CPS, FSC.

By determining the number of characters in a string at run time, you can write reusable code
that adjusts itself to meet each instance where it is used.

The SLC 500 processor supports the ability to embed a data table reference address within a
string (inline indirection). The SLC 500 AWA and AWT instructions can then look up the data
value and place an ASCII representation into the outgoing string. The Logix5000 controller
does not directly support this ability. Use the DTOS or RTOS instructions to convert a value to
a string and the CONCAT instruction to merge characters with another string.

PLC-5/SLC 500 Access of
Strings

The ASCII “A” data table in the PLC-5 and SLC 500 processors uses a
string format that is similar to the Logix string data type. The main
difference is that the LEN field (length) in a PLC-5/SLC 500 processor
is a 16-bit, INT value whereas the LEN field in a Logix5000 controller
is a 32-bit, DINT field. This difference can impact converted logic and
data communications. The Logix5000 controller will convert the LEN
field to the appropriate value and size when a PLC-5/SLC 500 message
format is used to read or write a string.

You can create a string data type
that is longer or shorter than the
default string data type

Only some instructions support
string data types

Use the SIZE instruction to
determine the number of
characters in a string

Using the DTOS, RTOS, and
CONCAT instructions, you can
embed tag values within a
string
Publication 1756-RM094A-EN-P - May 2004

Addressing Data 3-11
Configuring Tags A tag is a text-based name for an area of the controller’s memory
where data is stored. Tags are the basic mechanism for allocating
memory, referencing data from logic, and monitoring data.

For more information on I/O tags, see Chapter 6 “Communicating
with I/O.”

If you want the tag to: Then choose this type:

store a value for use by logic within the project Base

use a different name for an existing tag’s data

(can help simplify long, pre-determined tag names,
such as for I/O data or user-defined structures)

Alias

send (broadcast) data to another controller Produced

receive data from another controller Consumed
Publication 1756-RM094A-EN-P - May 2004

3-12 Addressing Data
Guidelines for Base Tags

The controller supports pre-defined, stand-alone tags.

• Atomic tags are listed directly in the Tag Editor and Data Monitor and can be easily
located by browsing the alphabetical list.

• Atomic tags can be created on-line, but the data type can only be modified off-line.

• Using only atomic tags can impact HMI communications performance as more
information must be passed and acted on.

User-defined structures (data types) let you organize your data to match your machine or
process.

• One tag contains all the data related to a specific aspect of your system. This keeps
related data together and easy to locate, regardless of its data type.

• Each piece of data (member) gets a descriptive name.

• You can use the structure to create multiple tags with the same data layout.

• User-defined structure can only be modified off-line

• RSLinx optimizes user-defined structures more than stand-alone tags.

An array creates multiple instances of a data type under a common tag name.

• Arrays let you organize a block of tags that use the same data type and perform a
similar function.

• You organize the data in 1, 2, or 3 dimensions to match what the data represents.

• Arrays can only be modified off-line.

• RSLinx optimizes array data types more than stand-alone tags.

Minimize the use of BOOL arrays. Many array instructions do not operate on BOOL arrays.
This makes it more difficult to initialize and clear an array of BOOL data.

If you want multiple tags with the same name, define each tag at the program scope
(program tags) for a different program. This lets you re-use both logic and tag names in
multiple programs.

Avoid using the same name for both a controller tag and a program tag. Within a program,
you cannot reference a controller tag if a tag of the same name exists as a program tag for
that program.

Although tags are not case sensitive (upper case A is the same as lower case a), mixed case
is easier to read. For example, “Tank_1” can be easier to read than “tank1.”

RSLogix 5000 software displays tags of the same scope in alphabetical order. To make it
easier to monitor related tags, use similar starting characters for tags that you want to keep
together. For example, consider using “Tank_North” and “Tank_South” rather than
North_Tank” and “South_Tank.”

RSLogix 5000 software uses a simple sort to alphabetize tag names in the Tag Editor and
Data Monitor. This means if you have Tag1, Tag2, Tag11, and Tag12, the software displays
them in order as Tag1, Tag11, Tag12, and then Tag2. If you want to keep them in numerical
order, name them Tag01, Tag02, Tag11, and Tag12.

Create stand-alone atomic tags

Create user-defined structures

Use arrays like files to quickly
create a group of similar tags

Take advantage of
program-scoped tags

Use mixed case and the
underscore characters

Consider alphabetical order

Use leading zeroes (0) when
numbers are part of tag names
Publication 1756-RM094A-EN-P - May 2004

Addressing Data 3-13
Creating Alias Tags An alias tag lets you create one tag that represents another tag.

• both tags share the same value as defined by the base tag

• when the value of a base tag changes, all references (aliases) to
the base tag reflect the change

When assigning aliases, avoid

• nesting aliases (you cannot have an alias of an alias)

• using multiple aliases to the same tag

On upload, the software decompiles the program and uses the physical memory addresses to
determine which tags are referenced in the code. All references to a base tag reverts to an
alias if one exists. If multiple aliases point to the same tag, RSLogix 5000 software uses the
first alias tag (alphabetically) that it finds.

During download, the program is compiled into machine executable code and physical
memory addresses. While the existence of an alias requires controller memory to store the
name, the program performs the same operation for a reference with an alias or its
associated base tag.

Because an alias tag appears as a stand-alone tag to RSLinx software, an alias tag that
references a compound array or structure might require additional communication time.
When referencing tags from RSLinx software or other HMI, it might be fastest to reference
base tags directly.

Guidelines for Data Scope Data scope defines where you can access tags. When you create a tag,
you assign scope as either controller or program. Controller-scoped
tags are accessible by all programs. Program-scoped tags are only
accessible by the code within a specific program.

Isolate portions of a machine or different stations into separate
programs and use program-scoped tags within each program. This:

• provides isolation between programs

• prevents tag name collisions

• improves the ability to reuse code

An alias tag references a
base tag

Alias tags do not affect
controller execution

Accessing alias tags from
RSLinx software

controller
scope

program
scope

If you want to: Then assign this scope:

use a tag in more than one program in the
same project

controller scope (controller tags)

use a tag in a message (MSG) instruction

produce or consume data

use motion tags

communicate with a PanelView terminal

reuse the same tag name multiple times for
different parts or processes within a controller

program scope (program tags)

have multiple programmers working on logic
and you want to merge logic into one project
Publication 1756-RM094A-EN-P - May 2004

3-14 Addressing Data
Notes:
Publication 1756-RM094A-EN-P - May 2004

Chapter 4

Sharing Tag Data with Other Controllers
(Produced and Consumed Tags)

Introduction Logix5000 controllers support the ability to produce (broadcast) and
consume (receive) system-shared tags.

For two controllers to share produced or consumed tags, both
controllers must be attached to the same control network (such as a
ControlNet or Ethernet/IP network). You cannot bridge produced and
consumed tags over two networks.

Logix5000 controllers can produce and consume tags over these
networks (as long as they support communications over these
networks):

• the ControlLogix backplane

• a ControlNet network

• an EtherNet/IP network

If there are no other connections, the controller supports:

The total combined number of consumed and produced tags that a
controller supports is:

(produced tags) + (consumed tags) + (other connections) ≤ 250 (or controller maximum)

As a: The controller supports:

producer (number of produced tags) ≤ 127

consumer (number of consumed tags) ≤ 250 (or controller maximum)

IMPORTANT The actual number of produced and consumed tags
that you can configure in project depends on the
connection limits of the communication module
through which you produce or consume the tags.
1 Publication 1756-RM094A-EN-P - May 2004

4-2 Sharing Tag Data with Other Controllers (Produced and Consumed Tags)
Guidelines for Creating Produced and Consumed Tags

For two controllers to share produced or consumed tags, both controllers must be attached
to the same network. You can produce and consume tags over ControlNet or EtherNet/IP
networks.

You can only produce and consume (share) controller-scoped tags.

If you transfer a tag with more than 500 bytes, create logic to transfer the data in packets.

If you consume a tag over a ControlNet hop, the tag must be ≤ 480 bytes. This is a limitation
of the ControlNet network, not the controller.

If you are producing several tags for the same controller:

• Group the data into one or more user-defined structures. This uses less connections
than producing each tag separately.

• Group the data according to similar update intervals. To conserve network
bandwidth, use a greater RPI for less critical data.

To share data types other than DINT or REAL, create a user-defined structure to contain the
required data.

Use the same data type for the produced tag and the corresponding consumed tag or tags.

To produce or consume INT or SINT data, create a user-defined structure with INT or SINT
members. The members can be individual INTs or SINTs or the members can be INT or SINT
arrays. The resulting user-defined structure can then be produced or consumed.

The data type for a produced or consumed tag must be the same in both the producer and
the consumer.

The controller produces tags in 32-bit words. For devices that communicate in other word
boundaries, such as 16-bit words, the resulting data in the target device can be misaligned.
To help avoid misalignment, structure the produced data in a user-defined structure.

Use the CPS instruction to copy the data to the outgoing tag on the producer side. Then use
another CPS instruction to copy the data into a buffer tag on the consumer side.

The CPS instructions provides data integrity for data structures greater than 32 bits.

You cannot bridge produced and
consumed tags over different
networks

Create the tag at controller
scope

Limit the size of the tag
to ≤ 500 bytes

Combine data that goes to the
same controller

Use one of these data types:
• DINT
• REAL
• array of DINTs or REALs
• user-defined structure

Use a user-defined structure to
produce or consume INT or
SINT data

The data type in the producer
and the consumer must match

Produce tags based on
user-defined structures to
non-Logix devices

Use a CPS instruction to buffer
produced and consumed data
Publication 1756-RM094A-EN-P - May 2004

Sharing Tag Data with Other Controllers (Produced and Consumed Tags) 4-3
Guidelines for Specifying
an RPI Rate

When configuring produced and consumed tags, you specify an
Requested Packet Interval (RPI) rate. The RPI value is the rate at
which the controller attempts to communicate with the module.

You use RSNetWorx for ControlNet software to select the network update time (NUT) and
the software schedules the network connections.

RSNetWorx cannot schedule a ControlNet network if a module and/or produced/consumed
tag on the network has an RPI that is faster than the network update time.

If multiple consumers request the same tag, the smallest (fastest) request determines the
rate at which the tag is produced for all the consumers.

Guidelines for Managing Connections for Produced and Consumed Tags

To reduce network traffic, minimize the size of produced and consumed tags. Also, minimize
the use of produced and consumed tags to high-speed, deterministic data, such
as interlocks.

When sending multiple tags to the same controller, use an array or user-defined structure to
consolidate the data. The byte limit of ≤ 500 bytes per produced and consumed tag
still applies.

Make sure the number of consumers configured for a produced tag is the actual number of
controllers that will consume the tag. If you set the number higher than the actual number of
controllers, you unnecessarily use up connections.

The default is 2 consumers per produced tag.

If there are multiple produced and consumed connections between two controllers and one
connection fails, all the produced and consumed connections fail.

Consider combining all produced and consumed data into one structure or array so that you
only need one connection between the controllers.

Configuring an Event Task
Based on a Consumed Tag

An event task executes automatically based on a preconfigured event
occurring. One such event can be the arrival of a consumed tag.

• Only one consumed tag can trigger a specific event task.

• Typically, use an IOT instruction in the producing controller to
signal the production of new data.

• When a consumed tag triggers an event task, the event task
waits for all the data to arrive before the event task executes.

Make sure the RPI is equal to or
greater than the NUT

The smallest (fastest) consumer
RPI determines the RPI for the
produced tag

Minimize the use of produced
and consumed tags

Use arrays or user-defined
structures

Configure the number of
consumers accurately

Multiple produced/consumed
connections are linked
Publication 1756-RM094A-EN-P - May 2004

4-4 Sharing Tag Data with Other Controllers (Produced and Consumed Tags)
For information on configuring an event task, see Chapter 2 “Dividing
Logic into Tasks, Programs, and Routines.”

Comparing Messages and Produced/Consumed Tags

Method: Benefits: Considerations:

Read/Write Message • programatically initiated

• communications and network resources only
used when needed

• support automatic fragmentation and
reassembly of large data packets, up to as
many as 32,767 elements

• some connections can be cached to improve
re-transmission time

• Generic CIP message useful for third-party
devices

• controller limited to 32 active messages
active at the same time (limit of 16 in
revision 11 and earlier)

• delay may occur if resources are not
available when needed

• MSG instruction and processing impacts
controller scan (system overhead timeslice)

• data arrives asynchronous to program scan
(use CPS instruction to reduce impact, no
event task support)

• fragmentation and reassembly limited to
exchanges between Logix5000 controllers

Produced/Consumed Tag • configured once and sent automatically
based on Requested Packet Interval (RPI)

• multiple consumers can simultaneously
receive the same data from a single
produced tag

• can trigger an event task when consumed
data arrives

• ControlNet resources are reserved up front

• does not impact the scan of the controller

• support limited to Logix5000 and PLC-5
controllers, and the 1784-KTCS I/O Linx and
select third party devices

• limited to 500 bytes over the backplane and
480 bytes over a network

• must be scheduled when using ControlNet

• data arrives asynchronous to program scan
(use CPS instruction and event tasks to
synchronize)

• connection status must be obtained
separately
Publication 1756-RM094A-EN-P - May 2004

Chapter 5

Designing Networks

Introduction NetLinx Open Network Architecture is the Rockwell Automation
strategy of using open networking technology for seamless, top-floor
to shop-floor integration. The networks in the NetLinx architecture —
DeviceNet, ControlNet, and EtherNet/IP — share a universal set of
communication services. These are the recommended networks for
Logix control systems.

Select a Network

Comparison: EtherNet/IP: ControlNet: DeviceNet:

Control I/O better BEST low density

Configuration devices BEST BEST BEST

Collect data BEST Better good

Peer interlocking better BEST good

Devices better better BEST

Topologies star

requires switches

trunkline/dropline

star with repeaters

trunkline/dropline

Capacity many nodes 99 nodes 63 nodes

Performance BEST BEST good
1 Publication 1756-RM094A-EN-P - May 2004

5-2 Designing Networks
EtherNet/IP Network Topology
EtherNet/IP network: Topology:

• EtherNet/IP supports messaging, produced/consumed tags,
and distributed I/O

• EtherNet/IP supports half/full duplex 10 Mbps or 100 Mbps
operation

• EtherNet/IP requires no network scheduling and no routing
tables

• There are several methods available to configure EtherNet/IP
network parameters for devices. Not all methods are available
at all times. These methods are device and configuration
dependent.

− DHCP

− Rockwell Automation BOOTP/DHCP utility

− RSLinx software

− RSLogix 5000 software

− RSNetWorx for EtherNet/IP software

Application Ideas

• connect many computers

• default gateway to business systems

• star topology best for few nodes and short distances

switch

device device

device

switch

device device

router

switch

device device

example 1

example 2
Publication 1756-RM094A-EN-P - May 2004

Designing Networks 5-3
Guidelines for EtherNet/IP

For EtherNet/IP control, you must use an industrial-grade switch that supports:

• full-duplex on all ports

• IGMP snooping

− constrains multicast traffic to ports associated with a specific IP multicast group

− most switches require a router for IGMP snooping to function

− if you have a stand-alone network, make sure the switch supports IGMP snooping
without a router present

• port mirroring

• VLAN (virtual local area network) to isolate traffic flow for different systems

• both autonegotiation and manual configuration of duplex and speed

• wire-speed switching fabric

• SNMP (Simple Network Management Protocol) to obtain statistical information
about a device

• IEEE 802.1D spanning tree protocol to support redundant backbone connections for
improved fault tolerances

• IEEE 802.1P frame prioritization

• IP address blocking to restrict traffic to a specific range

• auto-restore of switch configuration for replacement

• per port broadcast and multicast storm control

• port trunking for applications with multiple switches

• method for backing up configuration information

These Encompass partners have switches that meet the required features: Cisco,
Hirschmann, and N-Tron.

Make sure the switch has the
required features

Consider using switches from
Encompass partners
Publication 1756-RM094A-EN-P - May 2004

5-4 Designing Networks
ControlNet Network Topology
ControlNet network: Topology:

• ControlNet allows both I/O and messaging on the same wire.

• Multiple controllers and their respective I/O can also be placed
on the same ControlNet wire.

• When new I/O is added or an existing I/O module’s
communication structure is changed, you must use RSNetWorx
for ControlNet software to reschedule the network.

• If the network timing changes, every device with scheduled
traffic on the network is affected.

• To reduce the impact of changes, place each CPU and its
respective I/O on isolated ControlNet networks.

• Place shared I/O and produced/consumed tags on a common
network available to each CPU that needs the information.

Application Ideas

• default Logix network

• best replacement for Universal Remote I/O

• backbone to multiple distributed DeviceNet networks

• peer interlocking network

• common devices include: Logix5000 controllers, PanelView
terminals, I/O modules, and drives

Shared
I/O

I/O

I/O I/O

I/O

CPUCPU

ControlNet

Co
nt

ro
lN

et

Co
nt

ro
lN

et
Publication 1756-RM094A-EN-P - May 2004

Designing Networks 5-5
Guidelines for ControlNet

Use these publications when installing a ControlNet network:

• ControlNet Coax Media Planning and Installation Guide, publication CNET-IN002

• ControlNet Fiber Media Planning and Installation Guide, publication CNET-IN001

ControlNet was designed with a limit of 99 nodes per network, but this number of nodes
decreases network performance. A maximum of 40 nodes per network results in better
performance and leaves bandwidth for other communications.

Change these settings in the RSNetWorx for ControlNet software:

• UMAX (highest unscheduled node on the network)

− default is 99

− the network takes the time to process the total number of nodes specified in this
setting, even if there are not that many devices on the network

− change to a reasonable level to accommodate the active devices on the network
and any additional devices that might be connected

• SMAX (highest scheduled node on the network)

− default is 1

− this must be changed for all systems

− set SMAX < UMAX

Leaving too little memory for unscheduled network bandwidth results in poor message
throughput and slower workstation reponse.

DeviceNet (DNB) and serial (MVI) communication modules have multiple, 500-byte data
packets that will impact scheduled bandwidth. Placing these modules in the same chassis as
the controller avoids this data being scheduled over the ControlNet network

If you must place these communication devices in remote chassis, configure the input and
output sizes to match the data configured in RSNetWorx for DeviceNet software. This
reduces the amount of data that must be transmitted.

For best performance, limit the 1756-CNB, -CNBR to 40-48 connections. Add additional
modules in the same chassis if you need more connections. Adding more modules and
splitting connections among the modules can improve system performance.

If the chassis that contains the CNB module also contains multiple digital I/O modules,
configure the CNB module’s communication format for “Rack Optimization.” Otherwise, use
“None.” See the examples on page 6-5.

Any time you use RSNetWorx software and you save or merge your edits, attach to each
controller in the system with their respective RSLogix 5000 project file and perform a save.
This copies the ControlNet settings into the offline, database file and ensures that future
downloads of the controller permit it to go online without having to run RSNetWorx
software.

Use the installation
publications when installing a
ControlNet network

Limit the number of nodes per
ControlNet network to 40

Adjust the default RSNetWorx
settings

Design for at least 400 Kbytes of
available, unscheduled network
bandwidth

Place DeviceNet (DNB) and
serial (MVI) communication
modules in the local chassis

Limit 1756-CNB, -CNBR
connections

If you change network settings,
resave each controller’s project
Publication 1756-RM094A-EN-P - May 2004

5-6 Designing Networks
DeviceNet Network Topology
DeviceNet network: Topology:

• You need a DeviceNet scanner to connect
the controller to DeviceNet devices

• You must use RSNetWorx for DeviceNet
to configure devices and create the
scanlist for the scanner.

• You can configure the network baud rate
as 125K bit/s (default and a good starting
point), 250K bit/s, or 500K bit/s.

• If each device on the network (except the
scanner) sends ≤ 4 bytes of input data
and receives ≤ 4 bytes of output data,
you can use the AutoScan feature on the
scanner to configure the network.

Application Ideas

• distributed devices

• drives network

• diagnostic information

device device device device

single network

devicescannerCPU

device

linking
device

device device

CPU

device

linking
device

device device

several smaller distributed networks (subnets)
Publication 1756-RM094A-EN-P - May 2004

Designing Networks 5-7
Guidelines for DeviceNet

Use this publication when installing a DeviceNet network:

• DeviceNet Cable System Manual, publication DN-UM072

Placing DNB modules in the local chassis maximizes performance, especially in ControlLogix
systems.

Size the input and output image for the DNB modules to the actual devices that are
connected plus 20% for future growth. If you have to place DNB modules in remote chassis,
sizing the input and output images is critical for best performance.

A DNB supports:

• 124, 32-bit input words

• 123 32-bit output words

• 32, 32-bit status words

You can use RSNetWorx for DeviceNet software offline to estimate network data. Use a
second DNB if there is more network data than one module can support.

Configure a device’s parameters before adding that device to the scanlist. You cannot
change the configuration of many devices once they are already in the scanlist.

If you configure the scanner first, there is a chance that the scanner configuration will not
match the current configuration for a device. If the configuration does not match, the device
will not show up when you browse the network.

Devices default to node 63 out-of-the-box. Leave node address 63 unused so you can add a
new devices to the network. Then change the address of the new device.

Always leave at least one open node number to let a computer be attached to the network if
needed for troubleshooting, configuration, etc.

For the scanner to be in Run mode, the controller must be in Run mode and the logic in the
controller must set the scanner’s run bit.

RSNetWorx for DeviceNet software uses EDS file to recognize devices. If the software is not
properly recognizing a device, you are missing the correct EDS file(s). For some devices, you
can create an EDS file by uploading information from the device. Or you can get EDS files
from: http://www.ab.com/networks/eds.

Use the installation
publications when installing a
DeviceNet network

Place DeviceNet (DNB)
communication modules in the
local chassis

Verify the total network data
does not exceed the maximum
DNB data table size

Set up slaves first

Leave node address 63 open to
add nodes

Leave node address 62 open to
connect a computer

Don’t forget to set the scanner
run bit

Make sure you have the most
current EDS files for your
devices
Publication 1756-RM094A-EN-P - May 2004

5-8 Designing Networks
Notes:
Publication 1756-RM094A-EN-P - May 2004

Chapter 6

Communicating with I/O

Introduction In Logix5000 controllers, I/O values update at a period (Requested
Packet Interval, RPI) that you configure via Module Property dialog in
the I/O configuration folder of the project. The values update
asynchronously to the execution of logic.

The module sends input values to the controller at the specified RPI.
Because this transfer is asynchronous to the execution of logic, an I/O
value in the controller can change in the middle of a scan.

Buffering I/O Data If you reference an I/O tag multiple times and the application could
be impacted if the value changes during a program scan, you must
copy the I/O value into a buffer tag prior to the first reference of that
tag in your code. In your code, reference the buffer tag rather than the
I/O tag.

Use the synchronous copy (CPS) instruction to buffer I/O data. While
the CPS instruction copies data, no I/O updates or other tasks can
change the data. Tasks that attempt to interrupt a CPS instruction are
delayed until the instruction is done. Buffer I/O data to:

• prevent an input or output value from changing during the
execution of a program. (I/O updates asynchronous to the
execution of logic.)

• copy an input or output tag to a member of a structure or
element of an array.

• prevent produced or consumed data from changing during the
execution of a program.

• ensure all produced and consumed data arrives or is sent as a
group (not mixed from multiple transfers)

• only use the CPS instruction if the I/O data that you want to
buffer is greater than 32 bits (or 4 bytes) in size

If you have a user-defined structure with members that represent I/O
devices, you must use logic to copy the data into the members of the
structure from the corresponding I/O tags
1 Publication 1756-RM094A-EN-P - May 2004

6-2 Communicating with I/O
Guidelines for Specifying
an RPI Rate for I/O Modules

When adding I/O modules to a controller project, you specify a
Requested Packet Interval (RPI) rate. Depending on the controller
platform, you can select an RPI rate per module (ControlLogix) or an
RPI rate per controller (CompactLogix and FlexLogix).

The RPI value is the rate at which the controller attempts to
communicate with the module.

Setting the RPI faster (specifying a smaller number) than what your application needs
wastes network resources, such as ControlNet schedule bandwidth, network processing
time, and CPU processing time.

For example, if you need information every 80 msec, set the RPI at 40 msec. The data is
asynchronous to the controller scan, so you sample data twice as often (but no faster) than
you need it to make sure you have the most current data.

By grouping devices with similar performance needs on the same module, you consolidate
data transmission to one module rather than multiple modules. This conserves network
bandwidth.

When configuring a ControlNet network, set the network update time (NUT) equal to or less
than the fastest RPI of the I/O modules and produced/consumed tags in the system. For
example, if your fastest RPI is 10 msec, set the NUT to 5 msec for more flexibility in
scheduling the network.

Set the RPI to a binary multiple of the NUT. For example, if the NUT is 10 msec, select an RPI
such as 10, 20, 40, 80, 160, etc. msec.

Specify an RPI at 50% of the rate
you actually need

Group devices with similar
performance needs onto the
same module

Set the ControlNet network
update time (NUT) equal to or
less than the fastest RPI

The RPI should be an even
multiple of the NUT
Publication 1756-RM094A-EN-P - May 2004

Communicating with I/O 6-3
Communication Formats for
I/O Modules

The communication format determines whether the controller
connects to the I/O module via a direct or a rack-optimized
connection. The communication format also determines the type and
quantity of information that the module will provide or use.

Each module passes its data to/from the controller individually.
Communication modules bridge data across networks.

The communications module in a remote chassis consolidates data
from multiple modules into a single packet and transmits that packet
as a single connection to the controller.

.

direct connection

Local chassis Remote chassis

controller communication
module

communication
module

digital inputs
digital outputs

Benefits: Considerations:

• each module can determine its own rate (RPI)

• more data can be sent per module, such as diagnostic and
analog data

• supports event task communications

• requires additional connections and network resources

• this is the only method supported in the local chassis

• I/O data presented as individual tags

rack-optimized connection

Local chassis Remote chassis

controller communication
module

communication
module

digital inputs
digital outputs

Benefits: Considerations:

• one connection can service a full chassis of digital modules

• reduces network resources and loading

• all modules are sent at the same rate

• unused slots are still communicated

• still need a direct connection for analog and diagnostic data

• limited to remote chassis

• I/O data presented as arrays with alias tags for each module
Publication 1756-RM094A-EN-P - May 2004

6-4 Communicating with I/O
The rack-optimized format limits data to a single 32-bit input word per
module in a chassis. If you place a diagnostic module in a chassis, the
rack-optimized format eliminates the value that the diagnostic module
offers. In this case, it’s better to use a direct connection so that all of
the module's diagnostic information is passed to the controller.

Guidelines for Managing I/O Connections

Analog modules always use direct connections, except for 1771 analog modules which use
connected messaging.

Digital modules can use direct or rack-optimized connections. Communication formats that
include “optimization” in the title are rack-optimized connections; all other connection
options are direct connections.

For a remote adapter:

If you are trying to limit the number of controller and network connections, rack-optimized
connections can help.

The type of I/O module can
determine the type of
connection

Select the communication format
for a remote adapter based on the
remote I/O modules

Select: If:

None the remote chassis contains only analog modules,
diagnostic digital modules, fused output modules, or
communication modules

Rack-Optimized the remote chassis only contains standard, digital
input and output modules (no diagnostic modules or
fused output modules)

Listen Only Rack-Optimized you want to receive I/O module and chassis slot
information from a rack-optimized remote chassis
owned by another controller

Use rack-optimized
connections to conserve
connection use
Publication 1756-RM094A-EN-P - May 2004

Communicating with I/O 6-5
Guidelines for Managing I/O Connections (continued)

For a remote adapter module configured for rack-optimized connections, there is always data
sent for each slot in the chassis, even if a slot is empty or contains a direct connection
module. There are 12 bytes of data transferred for rack-optimized overhead between the
controller and the remote adapter module. In addition, the remote adapter module sends
8 bytes per slot to the controller; the controller sends 4 bytes per slot to the remote adapter.

For a small number of digital modules in a large chassis, it might be better to use direct
connections because transferring the full chassis information might require more system
bandwidth than direct connections to a few modules.

For example:

In some cases, all direct
connections work best

Example: Description:

Remote 17-slot chassis

Slot 0: 1756-CNBR/D

Slots 1-15: analog modules

Slot 16: standard digital module

Option 1: Select Rack Optimization for remote adapter’s communication format. This
example uses 16 controller connections (15 for analog modules and 1 for the
rack-optimized connection). This example also transfers:

• 12 bytes for rack-optimized overhead

• 12 bytes for the digital module

• 12 bytes for each of the 15 analog modules, for a total of 180 bytes

Option 2: Select None for the remote adapter’s communication format. This example also
uses 16 controller connections (1 direct connection to each I/O module). There is no
rack-optimized overhead data to transfer.

Recommendation: Option 2 is recommended because it avoids unnecessary network
traffic, and thus improves network performance.

Remote 17-slot chassis

Slot 0: 1756-CNBR/D

Slots 1-8: analog modules

Slots 9-16: digital modules

Option 1: Select Rack Optimization for the remote adapter’s communication format. This
example uses 9 controller connections (8 for analog modules and 1 for the rack-optimized
connection). This example also transfers:

• 12 bytes for rack-optimized overhead

• 12 bytes for each of the 8 digital modules, for a total of bytes 96 bytes

• 12 bytes for each of the 8 analog modules, for a total of 96 bytes

Option 2: Select None for remote adapter’s communication format. This example uses
16 controller connections (1 direct connection to each I/O module). There is no
rack-optimized overhead data to transfer.

Recommendation: The best option for this example depends on the type of digital I/O
modules in the system and other controller connections. If the total system has many
analog modules, diagnostic modules, fused output modules, or produced/consumed tags,
select Option 1 to conserve controller connections. If there are plenty of controller
connections available, select Option 2 to reduce unnecessary network traffic.
Publication 1756-RM094A-EN-P - May 2004

6-6 Communicating with I/O
Creating Tags for I/O Data Each I/O tag is automatically created when you configure the I/O
module through the programming software. Each tag name follows
this format:

Location:SlotNumber:Type.MemberName.SubMemberName.Bit

If you configure a rack-optimized connection, the software creates a
rack-object tag for the remote communication module. You can
reference the rack-optimized I/O module individually, or by its
element within the rack-object tag.

This address variable: Is:

Location Identifies network location

LOCAL = local chassis or DIN rail

ADAPTER_NAME = identifies remote adapter or bridge

SlotNumber Slot number of I/O module in its chassis

Type Type of data:

I = input C = configuration

O = output S = status

MemberName Specific data from the I/O module, such as Data and Fault; depends on the module

SubMemberName Specific data related to a MemberName.

Bit (optional) Specific point on the I/O module; depends on the size of the I/O module (0-31 for a 32-point module)

This is the individual tag created for
the I/O module in remote slot 1.

For example, a remote ControlNet communication
module (remote_cnb) has an I/O module in slot 1.

This is the entry in the rack-object tag
for the remote communication module
that identifies the I/O module in
remote slot 1.
Publication 1756-RM094A-EN-P - May 2004

Communicating with I/O 6-7
Controller Ownership When you choose a communication format, you have to choose
whether to establish an owner or listen-only relationship with the
module.

The owner controller writes configuration data and can establish a connection to the
module.

A controller using a listen-only connection only monitors the module. It does not write
configuration data and can only maintain a connection to the I/O module when the owner
controller is actively controlling the I/O module.

There is a noted difference in controlling input modules versus
controlling output modules.

owner

listen-only

Controlling: This ownership: Description:

input modules owner An input module is configured by a controller that establishes a connection as an owner.
This configuring controller is the first controller to establish an owner connection.

Once an input module has been configured (and owned by a controller), other controllers
can establish owner connections to that module. This allows additional owners to
continue to receive multicast data if the original owner controller breaks its connection
to the module. All other additional owners must have the identical configuration data
and identical communications format that the original owner controller has, otherwise
the connection attempt is rejected.

listen-only Once an input module has been configured (and owned by a controller), other controllers
can establish a listen-only connection to that module. These controllers can receive
multicast data while another controller owns the module. If all owner controllers break
their connections to the input module, all controllers with listen-only connections no
longer receive multicast data.

output modules owner An output module is configured by a controller that establishes a connection as an
owner. Only one owner connection is allowed for an output module. If another controller
attempts to establish an owner connection, the connection attempt is rejected.

listen-only Once an output module has been configured (and owned by one controller), other
controllers can establish listen-only connections to that module. These controllers can
receive multicast data while another controller owns the module. If the owner controller
breaks its connection to the output module, all controllers with listen-only connections
no longer receive multicast data.
Publication 1756-RM094A-EN-P - May 2004

6-8 Communicating with I/O
Notes:
Publication 1756-RM094A-EN-P - May 2004

Chapter 7

Communicating with Other Devices

Introduction The MSG instruction asynchronously reads or writes a block of data to
another device.

If the target device is a: Select one of these message types:

Logix5000 controller CIP Data Table Read

CIP Data Table Write

I/O module that you configure using
RSLogix 5000 software

Module Reconfigure

CIP Generic

PLC-5 controller PLC5 Typed Read

PLC5 Typed Write

PLC5 Word Range Read

PLC5 Word Range Write

SLC controller

MicroLogix controller

SLC Typed Read

SLC Typed Write

Block-transfer module Block-Transfer Read

Block-Transfer Write

PLC-3 processor PLC3 typed read

PLC3 typed write

PLC3 word range read

PLC3 word range write

PLC-2 processor PLC2 unprotected read

PLC2 unprotected write
1 Publication 1756-RM094A-EN-P - May 2004

7-2 Communicating with Other Devices
Caching Messages Some types of messages use a connection to send or receive data.
Some also give you the option of either leaving the connection open
(cache) or closing the connection when the message is done
transmitting. The following table shows which messages use a
connection and whether or not you can cache the connection:

A cached connection remains open until one of the following occurs:

• The controller goes to Program mode

• You rerun the message as uncached

• Another message is initiated and a cached buffer is needed

• An intermediate node in the connection goes down.

Message Buffers A Logix5000 controller has buffers for unconnected messages and for
cached messages. Buffers store incoming and outgoing message data
until the controller can process the data.

This type of message: Using this communication
method:

Uses a
connection:

Which you
can cache:

CIP data table read or write CIP X X

PLC2, PLC3, PLC5, or SLC (all types) CIP

CIP with Source ID

DH+ X X

CIP generic N/A your option(1) your option(1)

block-transfer read or write N/A X X

(1) You can connect CIP generic messages, but for most applications we recommend you leave CIP generic messages unconnected

MSG and Block-Transfer
Instructions

Communications
Handler

Data To and From
Logix5000 Controller

3
Incoming

10 - 40
Outgoing

Unconnected
Buffers

Controller
Connections

250
Connections

(Buffers)

Open/Close Connections

CIP Generic MSG

Unconnected MSG

Uncached Connected CIP MSG or Block-Transfer

Cached Connected
MSG or Block-Transfer

Revision 12 and higher controller firmware allows
32 cached, shared between MSGs and block-transfers

Cache Buffers

16 MSG Buffers

16 BT Buffers
Publication 1756-RM094A-EN-P - May 2004

Communicating with Other Devices 7-3
Buffer: Description:

10 outgoing unconnected buffers

You can increase this to 40 by using a CIP
Generic message instruction. See the MSG
section in the Logix 5000 Controllers
General Instructions Reference Manual,
publication 1756-RM003

The outgoing unconnected buffers are for:

• establishing I/O connections to local I/O modules and remote devices on
ControlNet, EtherNet/IP, and Universal remote I/O networks

• executing unconnected PLC2, PLC3, PLC5, or SLC (all types) messages over
Ethernet or ControlNet (CIP and CIP with Source ID)

• initiation of messaging over DH+ (uses 2 buffers, one to open the connection and
one to transfer data)

• initiation of uncached block transfers

• initiation of uncached CIP read/write message instructions

• initiation of cached block transfers

• initiation of cached CIP read/write messages instructions

• CIP Generic message instructions

3 incoming unconnected buffers The incoming unconnected buffers are for:

• initial receiving of a cached CIP message instruction

• receiving an uncached CIP message instruction

• receiving a message over DH+

• receiving a CIP Generic message instruction

• receiving a read or write request from a ControlNet PanelView (unconnected
messaging)

• initial receiving of a read request from an Ethernet PanelView (connected
messaging)

• receiving a write request from an Ethernet PanelView (unconnected messaging)

• receiving a initial request from RSLogix 5000 to go online

• initial receiving of RSLinx connections

16 cached message buffers The cached buffers are outgoing buffers for cached messages and cached block-transfers.
A cached connection helps message performance because the connection is left open and
does not need to be reestablished next time it is executed.

If you cache more than 16 messages in either set of buffers, the controller looks at the
current buffers to determine how to deal with the additional cached messages. The
controller will look for a connection that has been inactive for the longest time and close
that connection and allow a new one to take its place. But if all 16 cached connections are
in use, the message will use one of the 10 unconnected out going buffers. If all the
unconnected buffers are in use, the message instruction will error with code 301 (No
Buffer Memory) or 302 (Bandwidth Not Available).

With revision 12 and higher controller firmware, you can cache 32 messages. For optimum
performance, do not cache more than 32 messages. If you cache more than 32 messages,
the controller looks for a connection that has been inactive for the longest time, closes
that connection, and allows a new connection take its place. The controller will close a
cached message or block-transfer, depending on which has been inactive the longest. If all
32 cached connections are in use, the message will use one of the unconnected out going
buffers.

The first time a cached message is executed, it uses one of the 10 out going unconnected
buffers. When the connection is established it will then move into the appropriate cached
buffer area.

16 cached block-transfer buffers
Publication 1756-RM094A-EN-P - May 2004

7-4 Communicating with Other Devices
In controllers with firmware revision 12 or earlier, the maximum
number of messages you can have active at the same time depends on
the type of message. If you are doing cached block transfers, you
have memory set aside for 16 cached block transfer connections. If
you are doing Logix-to-Logix or other message styles that can be
cached, you have another set of 16 cached connections. You then still
have the 10 unconnected out going buffers to use. So you could have
42 messages active at once.

Using outgoing unconnected buffers

Guidelines for Messages

The information in a message tag is accessed by the operating system asynchronously to the
program scan. In addition to the visible fields within the message tag, there are hidden
attributes only referenced by the background operating system.

The controller supports 32 active messages at a time. If you determine that there are more
than 32 messages, you will not be able to keep them cached. You will need extra
programming to ensure that no more than 32 messages are active at the same time.

Prior to controller revision 12, the controller supported 16 active messages at a time.

Even though there are network packet limitations (such as 500 bytes on ControlNet and
244 bytes on DH+), the controller can send a large amount of data from a single MSG
instruction. When configuring the message, select an array as the source/destination tags
and select the number of elements (as many as 32,767 elements) you want send. The
controller automatically breaks the array into small fragments and sends all the fragments to
the destination. On the receiving side, the data appears in fragments, so some application
code may be required to detect the arrival of the last piece.

Buffers: Use:

1-10 The first 10 buffers (default) are shared for unconnected messaging, initiating connected
messaging, establishing I/O connections, and establishing produced/consumed connections.

11 The 11th buffer is dedicated to establishing I/O and produced/consumed connections.

12-40 The 12th to the 40th buffers are used only for initiating connected messages and executing
unconnected messages. To increase the outgoing buffers to a value higher than 11, execute a
CIP generic message to configure that change.

Message tags must exist as
controller-scoped, base tags

You can have more than 32
messages in a program

You can use a message to send
a large amount of data
Publication 1756-RM094A-EN-P - May 2004

Communicating with Other Devices 7-5
Guidelines for Managing Message Connections

User-defined structures let you organize your data to match your machine or process.

• One tag contains all the data related to a specific aspect of your system. This keeps
related data together and easy to locate, regardless of its data type.

• Each individual piece of data (member) gets a descriptive name. This automatically
creates an initial level of documentation for your logic.

• You can use the structure to create multiple tags with the same data lay-out.

• RSLinx optimizes user-defined structures more than stand-alone tags.

If a message executes repeatedly, cache the connection. This keeps the connection open and
optimizes execution time. Opening a connection each time the message executes increases
execution time.

If a message executes infrequently, do not cache the connection. This closes the connection
upon completion of the message, which frees up that connection for other uses.

Each message uses one connection, regardless of how many devices are in the message
path. To conserve connections, you can configure one message instruction to sequentially
read from or write to a different device each time it executes. On each execution, the
instruction breaks its connection from one device and re-establishes the connection to a
subsequent device.

The system overhead timeslice percentage you configure for the
controller determines the percentage of controller time (excluding the
time for periodic and event tasks) that is devoted to communication
and background functions. This includes sending and receiving
messages. For information on specifying a system overhead
percentage, see “Selecting a System Overhead Percentage” on
page 2-10.

Create user-defined structures
or arrays

Cache connections when
appropriate

Use one message instruction
multiple times for multiple
devices
Publication 1756-RM094A-EN-P - May 2004

7-6 Communicating with Other Devices
Guidelines for Block-Transfer Messages

Distributing 1771 analog modules across multiple chassis reduces the number of
block-transfers that a single 1771-ACN or 1771-ASB module needs to manage.

Isolating different chassis onto different networks diversifies the communications so that no
single network or communication module has to deal with all of the communications.

If communicating over ControlNet, increase the amount of ControlNet unscheduled
bandwidth to permit additional time on the network for data exchange.

Increase the Logix5000 controller’s system overhead timeslice to allocate more CPU time to
communication processing from the continuous task.

Mapping Tags A Logix5000 controller stores tag names on the controller so that other
devices can read or write data without having to know physical
memory locations. Many products only understand PLC/SLC data
tables, so the Logix5000 controller offers a PLC/SLC mapping function
that lets you map Logix tag names to memory locations.

• You only have to map the file numbers that are used in
messages; the other file numbers do not need to be mapped.

• The mapping table is loaded into the controller and is used
whenever a “logical” address accesses data.

• You can only access controller-scoped tags (global data).

When mapping tags:

• Do not use file numbers 0, 1, and 2. These files are reserved for
Output, Input, and Status files in a PLC-5 processor.

• Use PLC-5 mapping only for tag arrays of data type INT, DINT,
or REAL. Attempting to map elements of system structures may
produce undesirable effects.

• Use these file types and identifiers:

Distribute 1771 analog modules
across multiple chassis

Isolate different 1771 chassis on
different networks

Increase ControlNet
unscheduled bandwidth

Increase the system overhead
timeslice percentage

For this Logix5000 array type: Use this PLC file identifier:

INT array N or B

DINT array L

REAL array F
Publication 1756-RM094A-EN-P - May 2004

Chapter 8

Optimizing an Application for Motion Control

Introduction The Logix5000 controller contains a high-speed motion task which
executes motion commands (relay ladder and structured text) and
generates position and velocity profile information. The controller
sends this profile information to one or more motion modules.
RSLogix 5000 programming software provides complete axis
configuration and motion programming support.

For more information on motion, see:

• The Motion Book

• Logix5000 Controllers Motion Instructions Reference Manual,
publication 1756-RM007

• ControlLogix Motion Module Setup and Configuration Manual,
1756-UM006

Coarse Update Rate The coarse update rate determines the periodic rate at which the
motion task executes to compute the servo commanded position,
velocity, and accelerations to be sent to the motion modules when
executing motion instructions.

To calculate the coarse update rate:

• 2 ∗ (task execution time + number of actions for every axis)

• divide the result by 1000 and round to the nearest msec

If the coarse rate is too small, the controller might not have time to
execute non-motion logic. As a general rule, one millisecond per axis
is required by the motion task in order to allow the controller
reasonable execution time.

The motion planner takes almost its entire minimum coarse iteration
time. The coarse iteration time is minimally set 1 msec per axis. So if
you have a periodic task running every 5 msec and 2 axes of motion,
the motion planner runs twice consuming close to 4 of the 5 msec. In
this case, it’s possible to never finish executing the periodic task.
1 Publication 1756-RM094A-EN-P - May 2004

8-2 Optimizing an Application for Motion Control
Axis Limits

Performance Limits The motion planner interrupts all other tasks, regardless of priority.

• The number of axes and coarse update period for the motion
group effect how long and how often the motion planner
executes.

• If the motion planner is executing when a task is triggered, the
task waits until the motion planner is done.

• If the coarse update rate occurs while a task is executing, the
task pauses to let the motion planner execute.

Controller: Supported Motion Modules and Axes: Applications:

ControlLogix 1756-M03SE (3 axes) RA SERCOS drives

1756-L60M03SE (3 axes)
1756-L60 controller with embedded SERCOS interface

RA SERCOS drives

1756-M08SE (8 axes) RA SERCOS drives

1756-M16SE (16 axes) RA SERCOS drives

1756-M02AE (2 axes) RA and third party:

• analog command signal

• quadrature encoder feedback

1756-HYD02 RA and third party:

• analog command signal

• linear transducer feedback

1756-M02AS RA and third party:

• analog command signal

• SSI feedback

SoftLogix 1784-PM16SE (16 axes)

• maximum of four 1784-PM16SE cards per computer

• associate only one 1784-PM16SE card with one controller

RA SERCOS drives

1784-PM02AE (2 axes)

• maximum of four 1784-PM02AE cards per computer

• maximum of four 1784-PM02AE cards can be associated
with one controller

• cannot associate a 1784-PM02AE motion card with the
same controller as a 1784-PM16SE card

RA and third party:

• analog command signal

• quadrature encoder feedback
Publication 1756-RM094A-EN-P - May 2004

Optimizing an Application for Motion Control 8-3
Motion Event Task Triggers An event task executes automatically based on a preconfigured event
occurring. There are different motion-based events.

For information on configuring an event task, see Chapter 2 “Dividing
Logic into Tasks, Programs, and Routines.”

To trigger an event task when: Use this trigger: With these considerations:

registration input for an axis
turns on (or off)

Axis Registration
1 or 2

• In order for the registration input to trigger the event task, first execute
a Motion Arm Registration (MAR) instruction. This lets the axis detect
the registration input and in turn trigger the event task.

• Once the registration input triggers the event task, execute the MAR
instruction again to re-arm the axis for the next registration input.

• If the scan time of your normal logic is not fast enough to re-arm the
axis for the next registration input, consider placing the MAR
instruction within the event task.

axis reaches the position that is
defined as the watch point

Axis Watch • In order for the registration input to trigger the event task, first execute
a Motion Arm Watch (MAW) instruction. This lets the axis detect the
watch position and in turn trigger the event task.

• Once the watch position triggers the event task, execute the MAW
instruction again to re-arm the axis for the next watch position.

• If the scan time of your normal logic is not fast enough to re-arm the
axis for the next watch position, consider placing the MAW instruction
within the event task

motion planner completes its
execution

Motion Group
Execution

• The coarse update period for the motion group triggers the execution of
both the motion planner and the event task.

• Because the motion planner interrupts all other tasks, it executes first.
If you assign the event task as the highest priority task, it executes
after the motion planner.
Publication 1756-RM094A-EN-P - May 2004

8-4 Optimizing an Application for Motion Control
Notes:
Publication 1756-RM094A-EN-P - May 2004

Chapter 9

Optimizing an Application for Use with HMI

Introduction Rockwell Automation offers several HMI (human-machine interface)
platforms:

Deciding how to implement HMI

Most third-party HMIs are limited to direct communications similar to
the multiple HMI method above.

Platform: Description:

PanelView Plus dedicated, machine-level HMI

RSView ME open, machine-level HMI

RSView SE Station single-workstation, supervisory-level HMI

RSView SE Distributed multi-server, multi-client, supervisory-level HMI

RSView32 single-station or single-server, multi-client, supervisory-level HMI

RSLinx software software products that provide plant-floor device connectivity for HMI applications

includes:

• RSLinx Classic, also known as RSLinx 2.x

• RSLinx Enterprise

Method: Benefits: Considerations:

Single HMI • all HMI/EOI support this method

• limited number of controller connections

• no server to setup and manage

• single point of failure for visualization

• only one person can monitor a single display
at a time

Multiple, Independent HMI • all HMI/EOI support this method

• the same HMI screens can be viewed at
multiple stations

• multiple people can monitor different parts of
system simultaneously

• each HMI gets its own data

• no server to setup and manage

• more controller connections are required

• additional burden on controller to service all
communications (program scan impact)

• no sharing of data

• adding additional HMIs has larger increase
on system

Client/Server HMI: • the same HMI screens can be viewed at
multiple stations

• server collects data for multiple clients

• fewer controller connections required

• impact on system is smaller than with
multiple HMIs

• additional server computer to administer

• server is a single point of failure for all HMIs

• little communications overhead savings if
each client wants different data

• adds communications
1 Publication 1756-RM094A-EN-P - May 2004

9-2 Optimizing an Application for Use with HMI
Guidelines for HMI Applications

On one machine, the maximum is:

• one HMI server

• one data server

Configure no more than two HMI servers per application:

• use one computer for each server

• maximum of 20,000 tags per HMI server

Configure no more than two data servers per application:

• use one computer for each server

Configure no more than 20 HMI clients per application:

• RSLinx Classic supports a maximum of 10 HMI clients

• RSLinx Enterprise supports a maximum of 20 HMI clients

See the “Comparison of RSLinx Classic and RSLinx Enterprise“on page 9-5.

Comparison of RSView32 and RSView Enterprise

Limit the number of servers on
one machine

Maximum of two HMI servers
per application

Maximum of two data servers
per application

Maximum of 20 HMI clients
per application

HMI product: Benefits: Considerations:

RSView32 • support Windows NT, Windows 2000, and
Windows XP

• RSView32 only supports development for
PC-based HMIs

• must use PanelBuilder software for PanelView
terminals

RSView Enterprise • supports Windows 2000 and Windows XP

• single RSView Studio development
environment for PC-based HMIs, PanelView
Plus terminals, and VersaView CE terminals

• FactoryTalk enabled

• does not support Windows NT
Publication 1756-RM094A-EN-P - May 2004

Optimizing an Application for Use with HMI 9-3
How RSLinx Software
Communicates with
Logix5000 Controllers

RSLinx software acts as a data server to optimize communications to
HMI applications. RSLinx software groups data items into a single
network packet to reduce the number of messages that get sent over
the network and that need to be processed by a controller.

1. When RSLinx software first connects to a Logix5000 controller, it
queries the tag database and uploads definitions for all
controller-scoped tags. If there are multi-layer, user-defined
structures that are controller-scoped, RSLinx software just
queries the upper layer.

2. When the HMI client requests data, RSLinx software queries the
definitions for program-scoped tags and the lower layers of
multi-layer user-defined structures.

3. RSLinx software receives requests for data items from local or
remote HMI/EOI clients and combines multiple requests in
optimized packets. Each data item is a simple Logix tag, array or
user-defined structure. Each optimized packet can be as large as
480 bytes of data and can contain one or more data items.

4. The Logix5000 controller allocates unused system RAM to create
an optimization buffer to contain the requested data items.

– a single optimization buffer can contain as much data as will
fit into a single 480-byte packet (optimization is limited to
480 bytes)

– currently, RSLinx Enterprise only provides optimization for
array tags

– if you use RSLogix 5000 software to monitor controller RAM,
you can see used memory increase

– the controller creates an optimization buffer for each RSLinx
optimization packet in the scan.

Important: Unless otherwise indicated,
references to RSLinx software include
both RSLinx Classic software and RSLinx
Enterprise software

Optimized
array tags

Standalone tags

Tags on Scan in RSLinx

Kb
yt

es
 o

f M
em

or
y

N
ee

de
d

Publication 1756-RM094A-EN-P - May 2004

9-4 Optimizing an Application for Use with HMI
Guidelines for RSLinx Software

For multiple HMI stations:

• leverage remote OPC (RSLinx Classic software) or FactoryTalk (RSLinx Enterprise
software) for data collection

• only the RSLinx data server should have an active topic

• do not configure or use topics on the HMI stations

• RSLinx software does not need to be on the HMI stations

The performance of tag collection decreases as the more RSLinx stations collect data from
the same controller.

Use an RSLinx Gateway station and have the other data collection stations use remote OPC
for data collection.

When switching from one HMI screen to another, it takes time to put items in the controller
on scan and take items off scan. Part of this time delay is due to the controller allocating
system RAM for the optimization buffer.

To eliminate this delay, when switching between HMI screens, put the items in the HMI
screens on scan and leave them on scan. For example, you can create a data log to keep the
items on scan. Then when switching between HMI screens, data collection continues
without interruption.

RSLinx Enterprise and RSView SE software account for this time delay. When HMI screens
change, these applications deactivate tags rather than remove them from scan.

Use RSLinx software as the data
server for multiple HMIs

Do not use too many
RSLinx stations

Account for delay time when
adding/removing scanned tags
Publication 1756-RM094A-EN-P - May 2004

Optimizing an Application for Use with HMI 9-5
Comparison of RSLinx Classic and RSLinx Enterprise

Comparison: RSLinx Classic (RSLinx 2.x) Software: RSLinx Enterprise Software:

Supported platforms • Windows 98

• Windows ME

• Windows NT

• Windows 2000

• Windows XP

• Windows CE

• Windows 2000

• Windows XP

Architecture single-threaded multi-threaded

Data server OPC data server

preferred data server for PLC/SLC platforms and
applications requiring complex network routings

maximum 10 clients per data server

Factory Talk Live data server

preferred data server for Logix5000 platforms

maximum 20 clients per data server

PLC/SLC systems maximum 20 controllers per data server via Ethernet maximum 20 controllers per data server via Ethernet

Logix5000 systems maximum:

• 10 controllers per data server via Ethernet

• 10,000 active (on-scan) tags per data server

• 3 RSLinx data servers per controller

maximum:

• 20 controllers per data server via Ethernet

• 20,000 active (on-scan) tags per data server

• 3 RSLinx Enterprise data servers per controller

User interface and
event logs

yes currently no

Benefits • supports topic switching with redundant
ControlLogix system

• support used-defined tag optimization

• RSLinx Gateway consolidates multiple HMI
requests to reduce network traffic

• works with integrated OPC server

• uses 4 read and 1 write uni-directional
connections (fewer than RSLinx software)

• automatically handles Logix tag changes

• FactoryTalk Live consolidates multiple HMI
requests to reduce network traffic

Considerations • requires HMI to be restarted if Logix5000
controller is reloaded with changes to tags on
scan

• uses 4 bi-directional connections

• does not support topic switching with
redundant ControlLogix system

• optimization limited to array tags

• does not yet support OPC

• ActiveX faceplates require a separate
OPC server
Publication 1756-RM094A-EN-P - May 2004

9-6 Optimizing an Application for Use with HMI
Guidelines for Configuring Controller Tags

Most third party operator interface products do not support DINT (32-bit) data types.
However, there are additional performance and memory-use considerations when using INT
data types. See “Guidelines for Data Types” on page 3-2.

RSView supports native Logix5000 data types (including BOOL, SINT, INT, DINT, and REAL),
structures, and arrays.

Most third party operator interface products do not support user-defined structures. Arrays
also ensure that data is in contiguous memory, which optimizes data transfer between the
controller and RSLinx or other operator interface.

Arrays of tags transfer more quickly and take up less memory than groups of individual tags.

To optimize data transfer between the controller and RSLinx or other operator interface, use
PLC mapped tags.

The RSLinx topic must have the Optimize Poke Packets enabled.

The RSView application must write the values through a DownloadAll command or the
WritePendingValues VBA method.

Use RSLinx OPC services to bundle multiple tag requests into a single message to reduce
communications overhead.

OPC provides better optimization than DDE.

Referencing controller data from RSView

This table shows how to reference data in RSView tag address.

When addressing a Logix5000 string tag, use the address syntax
“[OPC_Topic]StringTag.Data[0],SC82” to address a SINT array. The
string data is stored in the SINT array “.Data” of the string tag, and you
address the first element of this array (“.Data[0]”). The maximum
number of characters in a STRING tag is 82. If you need more
characters than that, create your own user-defined structure to hold
the characters. See “Guidelines for String Data Types” on page 3-10.

Use INT data types with third
party products

Group related data in arrays

Map tags to PLC addresses

Use RSLinx OPC services

Logix5000 Array Data Type: Description: PLC File Identifier: RSView Tag Data Type:

INT 16-bit integer N Integer

DINT 32-bit integer L Long Integer

SINT 8-bit integer A Byte

REAL floating point F Floating Point

BOOL value of 0, 1, or -1 B Digital
Publication 1756-RM094A-EN-P - May 2004

Chapter 10

Optimizing an Application for Process Control

Introduction The Logix5000 controller integrates a function block diagram editor
and several process control instructions. The controller can generally
execute more loops than typical applications require.

Comparison of PID and
PIDE Instructions

The function block PIDE instruction offers additional enhancements
over the relay ladder PID instruction:

Enhanced PID (PIDE): Standard PID:

velocity form algorithm which works on change in error value

This algorithm is the same type as used in most DCS systems. The
algorithm also makes it easier to implement adaptive gains.

position form algorithm which works on error values

full set of modes:

• program/operator control

• cascade/ratio mode

• auto mode

• manual mode

• override mode

• hand mode

limited set of modes

• auto mode

• software manual mode (similar to PIDE manual mode)

• manual mode (similar to PIDE hand mode)

available selection of timing modes:

• periodic

• oversample

• real time sampling

no timing modes

handling for PV/CV faults

The PIDE block has built-in PVFault and CVFault members.

no handling for PV/CV faults

full bumpless transfer into and out of cascade mode no bumpless transfer into or out of cascade mode
1 Publication 1756-RM094A-EN-P - May 2004

10-2 Optimizing an Application for Process Control
Guidelines for Programming PID Loops

Configure the periodic tasks to execute at the desired rate.

Estimate the number of PID loops that can be executed as:

(execution time of periodic tasks in msec) / 2

This leaves sufficient time for the controller to manage other logic in lower-priority tasks.

Estimating number of loops

The number of loops depends on the execution time of the periodic
task as well as the controller.

Place PID loops in a
periodic task

Estimate the number of loops
based on task execution time

Periodic Task Execution Times (msec)

Controller 10 20 40 100 250 500 1000

1756-L55 6 13 26 64 161 322 644

1756-L6x 18 36 72 180 450 899 1799
Publication 1756-RM094A-EN-P - May 2004

Optimizing an Application for Process Control 10-3
Advanced Process
Instructions

Faceplates The RSLogix 5000 programming software includes faceplates for some
function block instructions. These faceplates are Active-X controls that
read the entire data structure for the associated instruction You can
use these faceplates with RSView software or any other application
that acts as an Active-X container.

Instruction: Description:

Alarm (ALM) provides alarming for any analog signal.

Enhanced PID (PIDE) provides enhanced capabilities over the standard PID instruction. The instruction uses the
velocity form of the PID algorithm. The gain terms are applied to the change in the value of
error or PV, not the value of error or PV.

Ramp/Soak (RMPS) provides for a number of segments of alternating ramp and soak periods.

Scale (SCL) converts an unscaled input value to a floating point value in engineering units.

Position Proportional (POSP) opens or closes a device by pulsing open or close contacts at a user-defined cycle time with
a pulse width proportional to the difference between the desired and actual positions.

Split Range Time Proportional (SRTP) takes the 0-100% output of a PID loop and drives heating and cooling digital output contacts
with a periodic pulse.

Lead Lag (LDLG) provides a phase lead-lag compensation for an input signal.

Function Generate (FGEN) converts an input based on a piece-wise linear function.

Totalizer (TOT) provides a time-scaled accumulation of an analog input value.

Deadtime (DEDT) performs a delay of a single input. You select the amount of deadtime delay.

Discrete 2-State Device (D2SD) controls a discrete device which has only two possible states such as on/off, open/closed,
etc.

Discrete 3-State Device (D3SD) controls a discrete device having three possible states such as fast/slow/off,
forward/stop/reverse, etc.

IMPORTANT RSLogix 5000 programming software is not a valid Active-X container.
Publication 1756-RM094A-EN-P - May 2004

10-4 Optimizing an Application for Process Control
The faceplates communicate with the controller via the RSLinx OPC
server. The RSLinx OPC server is not available in the RSLinx Lite
software that comes with RSLogix 5000 programming software. You
have to purchase a package such as RSLinx OEM, Professional,
or Gateway.

These instructions have faceplates:

• Alarm (ALM)

• Enhanced Select (ESEL)

• Totalizer (TOT)

• Ramp/Soak (RMPS)

• Discrete 2-State Device (D2SD)

• Discrete 3-State Device (D3SD)

• Enhanced PID (PIDE)
Publication 1756-RM094A-EN-P - May 2004

Glossary

A

B

C

D

E

Term: Definition:

atomic data type BOOL, SINT, INT, DINT, and REAL data types.

Term: Definition:

buffer A temporary memory area used for queuing incoming and outgoing messages. The buffer area of a
device determines how many messages can be queued for processing.

Term: Definition:

cache To leave a connection open for a MSG instruction that executes repeatedly.

coarse update rate Determines the periodic rate at which the motion task executes to compute the servo commanded
position, velocity, and accelerations to be sent to the motion modules when executing motion
instructions.

compound data type array, structure, and string data types.

connection A communication link between two devices, such as between a controller and an I/O module,
PanelView terminal, or another controller:

• connections are allocations of resources that provide more reliable communications between
devices than unconnected messages

• you indirectly determine the number of connections the controller uses by configuring the
controller to communicate with other devices in the system

consumed tag A tag that receives the data that is broadcast by a produced tag over an EtherNet/IP network,
ControlNet network, or ControlLogix backplane. A consumed tag must be:

• controller scope
• same data type (including any array dimensions) as the remote tag (produced tag)

See produced tag.

controller scope Data accessible anywhere in the controller. The controller contains a collection of tags that can be
referenced by the routines and alias tags in any program, as well as other aliases in the controller
scope.
See program scope.

Term: Definition:

direct connection A direct connection is a real-time, data transfer link between the controller and an I/O module. The
controller maintains and monitors the connection with the I/O module. Any break in the connection,
such as a module fault or the removal of a module while under power, sets fault bits in the data area
associated with the module.
See rack-optimized connection.

Term: Definition:

element An addressable unit of data that is a sub-unit of a larger unit of data. A single unit of an array or
structure.

explicit A connection that is non-time critical and is request/reply in nature. Executing a MSG instruction or
executing a program upload are examples of explicit connections. Explicit refers to basic information
(source address, data type, destination address, etc.) that is included in every message.
See implicit.
1 Publication 1756-RM094A-EN-P - May 2004

 2
I

L

M

N

P

Term: Definition:

implicit A connection that is time critical in nature. This includes I/O and produced/consumed tags. Implicit
refers to information (source address, data type, destination address, etc.) which is implied in the
message but not contained in the message.
See explicit.

index A reference used to specify an element within an array.

Term: Definition:

local connection A connection to a module in a local chassis, extended-local chassis, or any of the I/O banks configured
for the controller. Communication occurs across the backplane or virtual backplane and does not
require an additional communication module or adapter.

Term: Definition:

member An element of a structure that has its own data type and name.
• Members can be structures as well, creating nested structure data types.
• Each member within a structure can be a different data type.

Term: Definition:

network update time (NUT) The repetitive time interval in which data can be sent on a ControlNet network. The network update
time ranges from 2ms-100ms.

Term: Definition:

postscan A function of the controller where the logic within a program is examined before disabling the program
in order to reset instructions and data.

prescan Prescan is an intermediate scan during the transition to Run mode.
• The controller performs prescan when you change from Program mode to Run mode.
• The prescan examines all programs and instructions and initializes data based on the results.
• Some instructions execute differently during prescan than they do during the normal scan.

produced tag A tag that a controller is making available for use by other controllers. Produced tags are always at
controller scope.
See consumed tag.

program scope Data accessible only within the current program. Each program contains a collection of tags that can
only be referenced by the routines and alias tags in that program.
See controller scope.
Publication 1756-RM094A-EN-P - May 2004

 3
R

S

U

Term: Definition:

rack-optimized connection For digital I/O modules, you can select rack-optimized communication. A rack-optimized connection
consolidates connection usage between the controller and all the digital I/O modules in the chassis (or
DIN rail). Rather than having individual, direct connections for each I/O module, there is one
connection for the entire chassis (or DIN rail).
See direct connection.

remote connection A connection to a module in a remote chassis or DIN rail. Communication requires a communication
module and/or adapter.

requested packet interval (RPI) When communicating over a the network, this is the maximum amount of time between subsequent
production of input data.

• Typically, this interval is configured in microseconds.
• The actual production of data is constrained to the largest multiple of the network update time

that is smaller than the selected RPI.

Term: Definition:

scheduled connection A scheduled connection is unique to ControlNet communications. A scheduled connection lets you
send and receive data repeatedly at a predetermined rate, which is the requested packet interval (RPI).
For example, a connection to an I/O module is a scheduled connection because you repeatedly receive
data from the module at a specified rate. Other scheduled connections include connections to:

• communication devices
• produced/consumed tags

On a ControlNet network, you must use RSNetWorx for ControlNet to enable all scheduled
connections and establish a network update time (NUT).

structure Some data types are a structure.
• A structure stores a group of data, each of which can be a different data type.
• Within a structure, each individual data type is called a member.
• Like tags, members have a name and data type.
• You create your own user-defined structure, using any combination of individual tags and most

other structures.
• To copy data to a structure, use the COP instruction.

system overhead timeslice Specifies the percentage of controller time (excluding the time for periodic tasks) that is devoted to
communication and background functions (system overhead):

Term: Definition:

unconnected message An unconnected message is a message that does not require connection resources. An unconnected
message is sent as a single request/response.
Publication 1756-RM094A-EN-P - May 2004

 4
Notes:
Publication 1756-RM094A-EN-P - May 2004

1 Publication 1756-RM094A-EN-P - May 2004

Available Publications

RSLogix 5000 programming software includes PDF files of these
publications, in addition to online help and a tutorial.

Logix5000 Platform: Publications:

Logix5000 Controllers • Logix5000 Controllers Quick Start, 1756-QS001

• Logix5000 Controllers System Reference Manual, 1756-QS107

• EtherNet/IP Modules in Logix5000 Control Systems User Manual, ENET-UM001

• ControlNet Modules in Logix5000 Control Systems User Manual, CNET-UM001

• DeviceNet Modules in Logix5000 Control Systems User Manual, DNET-UM004

• Logix5000 Controllers General Instructions Reference Manual, 1756-RM003

• Logix5000 Controllers Process Control and Drives Instructions Reference Manual,
1756-RM006

• Logix5000 Controllers Motion Instructions Reference Manual, 1756-RM007

• Logix5000 Common Procedures Programming Manual, 1756-PM001

• Logix5000 Controllers Import/Export Reference Manual, 1756-RM084G

• Converting PLC-5 or SLC 500 Logic to Logix5000 Logic Reference Manual,
1756-RM085

ControlLogix Controllers • ControlLogix Controllers Installation Instructions, 1756-IN101

• ControlLogix System User Manual, 1756-UM001

• ControlLogix Motion Module Setup and Configuration Manual, 1756-UM006

CompactLogix Controllers • 1769-L31 CompactLogix Controllers Installation Instructions, 1769-IN069

• 1769-L32, -L35E CompactLogix Controllers Installation Instructions, 1769-IN020

• 1769-L20, -L30 CompactLogix Controllers Installation Instructions, 1769-IN047

• 1769-L31, -L32E, -L35E CompactLogix System User Manual, 1769-UM011

• 1769-L20, -L30 CompactLogix System User Manual, 1769-UM007

FlexLogix Controllers • FlexLogix Controllers Installation Instructions, 1794-IN002

• FlexLogix System User Manual, 1794-UM001

SoftLogix Controllers • SoftLogix Controllers Installation Instructions, 1789-IN001

• SoftLogix System User Manual, 1789-UM002

Publication 1756-RM094A-EN-P - May 2004 2 PN 957867-08
Copyright © 2004 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Rockwell Automation
Support

Rockwell Automation provides technical information on the web to assist you
in using our products. At http://support.rockwellautomation.com, you can
find technical manuals, a knowledge base of FAQs, technical and application
notes, sample code and links to software service packs, and a MySupport
feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation,
configuration and troubleshooting, we offer TechConnect Support programs.
For more information, contact your local distributor or Rockwell Automation
representative, or visit http://support.rockwellautomation.com.

Installation Assistance

If you experience a problem with a hardware module within the first 24
hours of installation, please review the information that's contained in this
manual. You can also contact a special Customer Support number for initial
help in getting your module up and running:

New Product Satisfaction Return

Rockwell tests all of our products to ensure that they are fully operational
when shipped from the manufacturing facility. However, if your product is
not functioning and needs to be returned:

United States 1.440.646.3223
Monday – Friday, 8am – 5pm EST

Outside United
States

Please contact your local Rockwell Automation representative for any
technical support issues.

United States Contact your distributor. You must provide a Customer Support case
number (see phone number above to obtain one) to your distributor in
order to complete the return process.

Outside United
States

Please contact your local Rockwell Automation representative for
return procedure.

	1756-RM094A-EN-P, Logix5000 Controllers Design Considerations Reference Manual
	Preface
	Designing Logix5000 Systems
	Introduction
	Important User Information
	Table of Contents
	Chapter 1
	Logix5000 Controller Resources
	Introduction
	Using Connections for Communications
	Determining Total Connection Requirements

	Chapter 2
	Dividing Logic into Tasks, Programs, and Routines
	Introduction
	Deciding When to Use Tasks, Programs, and Routines
	Specifying Task Priorities
	Managing User Tasks
	Factors that Affect Task Execution
	Configuring a Continuous Task
	Configuring a Periodic Task
	Configuring an Event Task
	Guidelines for Configuring an Event Task
	Selecting a System Overhead Percentage
	Managing the System Overhead Timeslice Percentage
	Developing Application Code in Routines
	Programming Methods
	Controller Prescan of Logic
	Controller Postscan of SFC Logic

	Chapter 3
	Addressing Data
	Introduction
	Guidelines for Data Types
	Arrays
	Guidelines for Arrays
	Indirect Addressing of Arrays
	Guidelines for Array Indexes
	Prescan of an Array Index
	Guidelines for User-Defined Structures
	Selecting a Data Type for Bit Tags
	Serial Bit Addressing
	Guidelines for String Data Types
	PLC-5/SLC 500 Access of Strings
	Configuring Tags
	Guidelines for Base Tags
	Creating Alias Tags
	Guidelines for Data Scope

	Chapter 4
	Sharing Tag Data with Other Controllers (Produced and Consumed Tags)
	Introduction
	Guidelines for Creating Produced and Consumed Tags
	Guidelines for Specifying an RPI Rate
	Guidelines for Managing Connections for Produced and Consumed Tags
	Configuring an Event Task Based on a Consumed Tag
	Comparing Messages and Produced/Consumed Tags

	Chapter 5
	Designing Networks
	Introduction
	Select a Network
	EtherNet/IP Network Topology
	Guidelines for EtherNet/IP
	ControlNet Network Topology
	Guidelines for ControlNet
	DeviceNet Network Topology
	Guidelines for DeviceNet

	Chapter 6
	Communicating with I/O
	Introduction
	Buffering I/O Data
	Guidelines for Specifying an RPI Rate for I/O Modules
	Communication Formats for I/O Modules
	Guidelines for Managing I/O Connections
	Guidelines for Managing I/O Connections (continued)
	Creating Tags for I/O Data
	Controller Ownership

	Chapter 7
	Communicating with Other Devices
	Introduction
	Caching Messages
	Message Buffers
	Guidelines for Messages
	Guidelines for Managing Message Connections
	Guidelines for Block-Transfer Messages
	Mapping Tags

	Chapter 8
	Optimizing an Application for Motion Control
	Introduction
	Coarse Update Rate
	Axis Limits
	Performance Limits
	Motion Event Task Triggers

	Chapter 9
	Optimizing an Application for Use with HMI
	Introduction
	Guidelines for HMI Applications
	Comparison of RSView32 and RSView Enterprise
	How RSLinx Software Communicates with Logix5000 Controllers
	Guidelines for RSLinx Software
	Comparison of RSLinx Classic and RSLinx Enterprise
	Guidelines for Configuring Controller Tags

	Chapter 10
	Optimizing an Application for Process Control
	Introduction
	Comparison of PID and PIDE Instructions
	Guidelines for Programming PID Loops
	Advanced Process Instructions
	Faceplates

	Glossary
	A
	B
	C
	D
	E
	I
	L
	M
	N
	P
	R
	S
	U

	Available Publications
	Rockwell Automation Support
	Back Cover

