Allen-Bradley

Ll

Logix5000™
Controllers
Process Control
and Drives
Instructions

1756-Lx,1769-Lx, 1789-Lx, 1794-LX,
PowerFlex 700S

Reference Manual

Rockwell
Automation

Important User Information

Because of the variety of uses for the products described in this publication,
those responsible for the application and use of these products must satisfy
themselves that all necessary steps have been taken to assure that each
application and use meets all performance and safety requirements, including
any applicable laws, regulations, codes and standards. In no event will Rockwell
Automation be responsible or liable for indirect or consequential damage
resulting from the use or application of these products.

Any illustrations, charts, sample programs, and layout examples shown in this
publication are intended solely for purposes of example. Since there are many
variables and requirements associated with any particular installation, Rockwell
Automation does not assume responsibility or liability (to include intellectual
property liability) for actual use based upon the examples shown in this
publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application, Installation
and Maintenance of Solid-State Control (available from your local Rockwell
Automation office), describes some important differences between solid-state
equipment and electromechanical devices that should be taken into
consideration when applying products such as those described in this
publication.

Reproduction of the contents of this copyrighted publication, in whole or part,
without written permission of Rockwell Automation, is prohibited.

Throughout this publication, notes may be used to make you aware of safety
considerations. The following annotations and their accompanying statements
help you to identify a potential hazard, avoid a potential hazard, and recognize
the consequences of a potential hazard:

WARNING Identifies information about practices or circumstances
that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property
damage, or economic loss.

Identifies information about practices or circumstances
ATTENTION outp
that can lead to personal injury or death, property damage,
ot economic loss.

A
A

IMPORTANT Iden.tiﬁe.s information that .is critical for successful
application and understanding of the product.

Summary of Changes

Introduction

Updated Information

This release of this document contains new and updated information. To find
new and updated information, look for change bars, as shown next to this
paragraph.

This document contains the following changes:

Change: See:

Instruction locator table now includes the name of each instruction instruction locator
Additional information about the SCRV profiles chapter 2
Information on how to choose function block elements, including IREFs, appendix A
OREFs, ICONs, and OCONs

Updated information on using function block instructions in the periodic appendix A
timing mode.

Clarification of the difference between the structured text CASE construct and appendix B

the C/C++ switch statement.

Publication 1756-RM006B-EN-P - May 2002

Summary of Changes 2

Notes:

Publication 1756-RM006B-EN-P - May 2002

Instruction Locator

Where to Find an Use this locator to find the reference details about Logix instructions (the
Instruction grayed-out instructions are available in other manuals). This locator also lists
which programming languages are available for the instructions.

If the locator lists: The instruction is documented in:

a page number this manual

general Logix5000 Controllers General Instruction Set Reference Manual,

publication 1756-RM003
motion Logix5000 Controllers Motion Instruction Set Reference Manual,

publication 1756-RM007

Instruction: Location: Languages: Instruction: Location: Languages:

structured text
function block

Publication 1756-RMO06C-EN-P - June 2003

Instruction Locator 2

Instruction: Location:

D2SD
Discrete 2-State Device

D3SD
Discrete 3-State Device

DEDT
Deadtime

DERV
Derivative

DFF
D Flip-Flop

Publication 1756-RMO06C-EN-P - June 2003

Languages:

structured text
function block

structured text
function block

structured text
function block

structured text
function block

structured text
function block

Instruction:

ESEL
Enhanced Select

FGEN
Function Generator

Location:

Languages:

structured text
function block

structured text
function block

Instruction Locator 3

Instruction: Location: Languages:

HLL 4-9 structured text
High/Low Limit function block
HPF 3-6 structured text
High Pass Filter function block
ICON A-1 function block

Input Wire Connector

INTG
Integrator

structured text
function block

IREF A-1 function block
Input Reference

JKFF 6-4 structured text
JK Flip-Flop function block

LDL2 3-12 structured text
Second-Order Lead Lag function block
LDLG 1-37 structured text
Lead-Lag function block

Instruction: Location: Languages:

LPF structured text
Low Pass Filter function block

MAVE structured text

Moving Average function block

structured text
function block

MAXC 5-6
Maximum Capture

Publication 1756-RMO06C-EN-P - June 2003

Instruction Locator 4

Instruction: Location: Languages: Instruction: Location: Languages:

MSTD structured text
Moving Standard Deviation function block

MUX function block
Multiplexer

NTCH structured text
Notch Filter function block

MINC structured text OCON function block
Minimum Capture function block Output Wire Connector

OREF function block
Output Reference

Publication 1756-RMO06C-EN-P - June 2003

Instruction Locator 5

Instruction:

PI
Proportional + Integral

Location:

Languages:

structured text
function block

Instruction: Location:

Languages:

PIDE 1-41 structured text
Enhanced PID function block
PMUL 2-20 structured text
Pulse Multiplier function block
POSP 1-75 structured text

Position Proportional

RESD
Reset Dominant

function block

structured text
function block

SCL 1-96 structured text
Scale function block
SCRV 2-28 structured text
S-Curve function block
SEL 4-19 function block
Select

SETD 6-8 structured text
Set Dominant function block

RLIM 4-15 structured text
Rate Limiter function block
RMPS 1-82 structured text
Ramp/Soak function block

SNEG 4-21 structured text
Selected Negate function block
SOC 2-38 structured text

Second-Order Controller

function block

SRTP 1-100 structured text
Split Range Time function block
Proportional

SSUM 4-23 structured text

Selected Summer

function block

Publication 1756-RMO06C-EN-P - June 2003

Instruction Locator 6

Instruction: Location: Languages: Instruction: Location: Languages:

T0T structured text
Totalizer function block

UPDN structured text
Up/Down Accumulator function block

Publication 1756-RMO06C-EN-P - June 2003

Preface

Introduction This manual is one of several Logix-based instruction documents.
Task/Goal: Documents:
Programming the controller for sequential Logix5000 Controllers General Instructions Reference Manual,
applications publication 1756-RM003
Programming the controller for process or drives Logix5000 Controllers Process Control and Drives Instructions Reference Manual,
applications publication 1756-RM006
You are here I>
Programming the controller for motion Logix5000 Controllers Motion Instructions Reference Manual,
applications publication 1756-RMO007
Importing a text file or tags into a project Logix5000 Controller Import/Export Reference Manual, publication 1756-RM084

Exporting a project or tags to a text file

Converting a PLC-5 or SLC 500 applicationtoa Logix5550 Controller Converting PLC-5 or SLC 500 Logic to Logix5000 Logic Reference
Logix5000 application Manual, publication 1756-RM085

These core documents address the Logix5000 family of controllers:

If you are: Use this publication:;

a new user of a Logix5000 controller Logix5000 Controllers Quick Start
publication 1756-QS00x

This quick start provides a visual, step-by-step overview of the basic steps you need to

complete to get you controller configured and running.

an experienced user of Logix5000 controllers Logix5000 Controllers System Reference
publication 1756-QR107

This system reference provides a high-level listing of configuration information, controller

features, and instructions (ladder relay, function block diagram, and structured text).

any user of a Logix5000 controller Logix5000 Controllers Common Procedures
publication 1756-PM001

This common procedures manual explains the common features and functions of all

Logix5000 controllers.

Who Should Use This document provides a programmer with details about each available
This Manual

instruction for a Logix-based controller. You should already be familiar with
how the Logix-based controller stores and processes data.

Novice programmers should read all the details about an instruction before

using the instruction. Experienced programmers can refer to the instruction
information to verify details.

Publication 1756-RM006C-EN-P - June 2003

Preface 2

Purpose of This Manual This manual provides a description of each instruction in this format.
This section: Provides this type of information:
Instruction name identifies the instruction

defines whether the instruction is an input or an output instruction

Operands lists all the operands of the instruction

if available in relay ladder, describes the operands
if available in structured text, describes the operands

E if available in function block, describes the operands

The pins shown on a default function block are only the default pins. The operands
table lists all the possible pins for a function block.

Instruction structure lists control status bits and values, if any, of the instruction
Description describes the instruction’s use
defines any differences when the instruction is enabled and disabled, if appropriate
Arithmetic status flags defines whether or not the instruction affects arithmetic status flags
see appendix Common Attributes
Fault conditions defines whether or not the instruction generates minor or major faults
if so, defines the fault type and code
Execution defines the specifics of how the instruction operates
Example provides at least one programming example in each available programming language

includes a description explaining each example

The following icons help identify language specific information:

This icon: Indicates this programming language:

relay ladder

structured text

function block

Publication 1756-RM006C-EN-P - June 2003

Preface 3

Common Information for The Logix5000 instruction set has some common attributes:
All Instruction
structions For this information: See this appendix:
common attributes appendix Common Attributes defines:

o arithmetic status flags
o data types
o keywords

arrays appendix Array Concepts defines arrays and explains
how the controller manipulates arrays

function block attributes appendix Function Block Attributes defines:
o program and operator control
e timing modes

Conventions and Set and clear
Related Terms

This manual uses set and clear to define the status of bits (booleans) and
values (non-booleans):

This term: Means:
set the bit is set to 1 (ON)

a value is set to any non-zero number
clear the hit is cleared to 0 (OFF)

all the bits in a value are cleared to 0

If an operand or parameter support more than one data type, the bold data

types indicate optimal data types. An instruction executes faster and requires
less memory if all the operands of the instruction use the same optimal data
type, typically DINT or REAL.

Publication 1756-RM006C-EN-P - June 2003

Preface 4

Publication 1756-RM006C-EN-P - June 2003

Relay ladder rung condition

The controller evaluates ladder instructions based on the rung condition
preceding the instruction (rung-condition-in). Based on the rung-condition-in
and the instruction, the controller sets the rung condition following the
instruction (rung-condition-out), which in turn, affects any subsequent

instruction.
input instruction output instruction
| AN
rung-in rung-out

condition condition

If the rung-in condition to an input instruction is true, the controller evaluates
the instruction and sets the rung-out condition based on the results of the
instruction. If the instruction evaluates to true, the rung-out condition is true;
if the instruction evaluates to false, the rung-out condition is false.

The controller also prescans instructions. Prescan is a special scan of all
routines in the controller. The controller scans all main routines and
subroutines during prescan, but ignores jumps that could skip the execution of
instructions. The controller executes all FOR loops and subroutine calls. If a
subroutine is called more than once, it is executed each time it is called. The
controller uses prescan of relay ladder instructions to reset non-retentive 1/O
and internal values.

During prescan, input values are not current and outputs are not written. The
following conditions generate prescan:

e Toggle from Program to Run mode

e Automatically enter Run mode from a power-up condition.
Prescan does not occur for a program when:

e The program becomes scheduled while the controller is running,

e The program is unscheduled when the controller enters Run mode.

Preface 5

Function block states

The controller evaluates function block instructions based on the state of
different conditions.

Possible Condition: Description;

prescan Prescan for function block routines is the same as for relay ladder routines. The only
difference is that the Enableln parameter for each function block instruction is cleared
during prescan.

instruction first scan Instruction first scan refers to the first time an instruction is executed after prescan. The

controller uses instruction first scan to read current inputs and determine the appropriate
state to be in.

instruction first run

Instruction first run refers to the first time the instruction executes with a new instance of a
data structure. The controller uses instruction first run to generate coefficients and other
data stores that do not change for a function block after initial download.

Every function block instruction also includes Enableln and EnableOut
parameters:

e function block instructions execute normally when Enableln is set.

e when Enableln is cleared, the function block instruction either executes
prescan logic, postscan logic, or just skips normal algorithm execution.

e EnableOut mirrors Enableln, however, if function block execution
detects an overflow condition EnableOut is also cleared.

e function block execution resumes where it left off when Enableln
toggles from cleared to set. However there are some function block
instructions that specify special functionality, such as re-initialzation,
when Enableln toggles from cleared to set. For function block
instructions with time base parameters, whenever the timing mode is
Oversample, the instruction always resumes were it left off when
Enableln toggles from cleared to set.

If the Enableln parameter is not wired, the instruction always executes as
normal and Enableln remains set. If you clear Enableln, it changes to set the
next time the instruction executes.

IMPORTANT

When programming in function block, restrict the range of

engineering units to +/ 10"/ because internal floating point
calculations are done using single precision floating point.
Engineering units outside of this range may result in a loss of
accuracy if results approach the limitations of single precision

floating point (+/—1O+/‘38).

Publication 1756-RM006C-EN-P - June 2003

Preface 6

Notes:

Publication 1756-RM006C-EN-P - June 2003

Table of Contents

Process Control Instructions
(ALM, D2SD, D3SD, DEDT, FGEN,
LDLG, PIDE, POSP, RMPS, SCL,
SRTP, TOT)

Chapter 1
Introductiont 1-1
Alarm (ALM) ..o 1-2
Monitoring the ALM Instruction 1-4
Discrete 2-State Device (D2SD) i 1-6
Monitoring the D2SD instruction. 1-9
Switching between Program control and Operator control ... 1-11
Commanded state in Program control 1-11
Commanded state in Operator control. 1-12
Hand mode or Overridemode 1-12
Output statet 1-13
Fault alarm conditions. L. 1-13
Mode alarm conditions il 1-14
Discrete 3-State Device (ID3SD)ot 1-15
Monitoring the D3SD instruction. 1-20
Switching between Program control and Operator control ... 1-23
Commanded state in Program control 1-23
Commanded state in Operator control. 1-24
Hand mode or Overridemode 1-24
Output stateovii i 1-26
Fault alarm conditions. i, 1-26
Mode alarm conditions i 1-27
Deadtime (DEDT).o e 1-28
Servicing the deadtime buffer...................... 1-30
Instruction behavior on InFault transition. 1-31
Function Generator (FGEN) 1-33
Lead-Lag LDLG)o i 1-37
Enhanced PID (PIDE) i, 1-41
Computing CV. i 1-53
Monitoring the PIDE instruction........................ 1-53
Autotuning the PIDE instruction. 1-53
Switching between Program control and Operator control ... 1-60
Operatingmodest 1-61
Selecting the setpoint.oiiiiiina.. 1-62
PV high/low alarming. i 1-64
Converting the PV and SP values to percent............... 1-66
Deviation high/low alarming 1-67
Zero crossing deadband control oLl 1-68
Selecting the control variable 1-69
Primary loop control i 1-73
Processing faults. oo 1-74

Publication 1756-RM006C-EN-P - June 2003

Table of Contents i

Drives Instructions
(INTG, PI, PMUL, SCRV, SOC,
UPDN)

Publication 1756-RM006C-EN-P - June 2003

Position Proportional (POSP).............. oo 1-75
Scaling the position and set point values 1-77
How the POSP instruction uses the internal cycle timer. 1-77
Producing outputpulses o oo 1-78
Calculating open and close pulse times. 1-79

Ramp/Soak RMPS). 1-82
Monitoring the RMPS instruction. 1-86
Initial mode applied on instruction first scan............... 1-87
Switching between Program control and Operator control ... 1-89
Program control......... i 1-91
Operatorcontrol 1-92
Executing the ramp/soak profile 1-93

Scale (SCL) . . oo 1-96
Alarming. 1-98
Limitingoooiii 1-98

Split Range Time Proportional (SRTP). 1-100
Using the internal cycle timer 1-102
Calculating heat and cool times. 1-102

Totalizer (TOT) ... 1-106
Monitoring the TOT instruction. 1-110
Check for low input cutoff 1-111
Operating modesottt 1-112
Resetting the TOT instructionooiin.... 1-113
Calculating the totalization 1-113
Determining if target values have been reached. 1-113

Chapter 2

Introduction i i 2-1

Integrator AINTG) 2-2
Limiting ... 2-4

Proportional + Integral (PI) 2-8
Operating in linearmode. i 2-12
Operating in non-linearmode. 2-12
Limitingot 2-15

Pulse Multiplier PMUL) i 2-20
Calculating the output and remainder. 2-22

S-Curve (SCRV) . ..o 2-28
Calculating output and rate values 2-33

Second-Order Controller SOC)t 2-38
Parameter limitations. i i 2-41
Limitingoooo i 2-41

Up/Down Accumulator (UPDN)........... 2-46

Table of Contents iii

Filter Instructions
(DERV, HPF, LDL2, LPF, NTCH)

Select/Limit Instructions
(ESEL, HLL, MUX, RLIM, SEL,
SNEG, SSUM)

Statistical Instructions
(MAVE, MAXC, MINC, MSTD)

Move/Logical Instructions
(DFF, JKFF, RESD, SETD)

Chapter 3
Introduction 3-1
Derivative (DERV) ... o 3-2
High Pass Filter (HPF). o oo 3-6
Second-Order Lead Lag (LDL2) oot 3-12
Low Pass Filter (LPF) 3-18
Notch Filter INTCH). 3-24
Chapter 4
Introduction i 4-1
Enhanced Select (ESEL)o i 4-2
Monitoring the ESEL instruction. 4-6
Switching between Program control and Operator control 4-8
High/Low Limit (HLL). o i i 4-9
Multiplexer (MUX).ot 4-12
Rate Limiter (RLIM) 4-15
Select (SEL) ..o 4-19
Selected Negate SNEG) 4-21
Selected Summer (SSUM)o i 4-23
Chapter 5
Introductionot 5-1
Moving Average MAVE) o 5-2
Initializing the averaging algorithm. 5-4
Maximum Capture (MAXC) 5-6
Minimum Capture MINC) o i 5-8
Moving Standard Deviation MSTD) 5-10
Initializing the standard deviation algorithm 5-12
Chapter 6
Introduction oo 6-1
D Flip-Flop (DFE).o e 6-2
JK Flip-Flop JKFE). e 6-4
Reset Dominant (RESD)........ o oo 6-6
Set Dominant (SETD)....... i i 6-8

Publication 1756-RM006C-EN-P - June 2003

Table of Contents iv

Function Block Attributes

Structured Text Programming

Common Attributes

Publication 1756-RM006C-EN-P - June 2003

Appendix A
Introductionc. o A-1
Choose the Function Block Elements A-1
Latching Data......... i i A-2
Orderof Executiont A-4
ResolveaLoop. ... A-5
Resolve Data Flow Between Two Blocks. A-6
CreateaOne ScanDelay. A-7
Summary. A-7
Function Block Responses to Overflow Conditions A-7
Timing Modes i A-9
Common instruction parameters for timing modes. A-11
Overview of timingmodes A-13
Program/Operator Control. o ... A-14
Appendix B
Introductiont B-1
Structured Text Syntax.oiuiiiin i B-1
ASSIGNMENTS . ..ottt B-3
Specify a non-retentive assignment. B-4
Assign an ASCII character toastring. B-5
EXPressions.ot B-5
Use arithmetic operators and functions B-7
Use relational operators. ..o, B-8
Use logical operators, B-10
Use bitwise OPerators.o.uvvtu et B-11
Determine the order of execution. B-11
Instructions. B-12
CONSLIUCES. « vttt B-13
IELTHEN o e B-14
CASE..OF . B-17
FOR...DO ... B-19
WHILE.. DO ... e B-22
REPEAT...UNTIL.o i B-25
Commentst B-28
Appendix C
Introduction C-1
Immediate Values. i C-1
Data ConversionS. . v vt vttt e e e C-1
SINTor INTto DINT C-3
Integerto REAL o C-5
DINT to SINTor INT C-5
REAL to aninteger, C-6

Table of Contents %

Function Block Faceplate Controls

Index

Appendix D
Introduction i D-1
Configuring general propertiesoounn..... D-2
Configuring display propertiesooouuoi... D-3
Configuring server propertiesouuveunneunon.. D-4
Configuring font properties.ovviunieennoo... D-5
ALM Control . ..o D-6
ESEL Control. e D-8
TOT Control e e e D-9
RMPS Controlo e D-11
D2SD Control ... oot D-14
D3SD Conttol . ..o e D-16
PIDE Conttol. e D-18

Publication 1756-RM006C-EN-P - June 2003

Table of Contents vi

Notes:

Publication 1756-RM006C-EN-P - June 2003

Chapter 1

Process Control Instructions

(ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL,
SRTP, TOT)

Introduction These process control instruction are available:
If you want to: Use this instruction: Available in these languages: See page:
provide alarming for any analog signal. Alarm (ALM) structured text 1-2
function block

control a discrete device that has only two Discrete 2-State Device structured text 1-6
possible states such as on/off, open/closed, (D2SD) function block

etc.

control a discrete device that has three possible Discrete 3-State Device structured text 1-15
states such as fast/slow/off, (D3SD) function block

forward/stop/reverse, etc.

perform a delay of a single input. You select the Deadtime (DEDT) structured text 1-28
amount of deadtime delay. function block

convert an input based on a piece-wise Function Generator (FGEN) structured text 1-33
linear function. function block

provide a phase lead-lag compensation foran Lead-Lag (LDLG) structured text 1-37
input signal. function block

regulate an analog output to maintain a process Enhanced PID (PIDE) structured text 1-41
variable at a certain setpoint using a PID function block

algorithm.

raise or lower a device by pulsing open or close Position Proportional structured text 1-75
contacts. (POSP) function block

provide for alternating ramp and soak periods. ~ Ramp/Soak (RMPS) structured text 1-82

function block

convert an unscaled input value to a floating Scale (SCL) structured text 1-96
point value in engineering units. function block

take the 0-100% output of a PID loop and drive ~ Split Range Time structured text 1-100
heating and cooling digital output contacts with Proportional (SRTP) function block

a periodic pulse.

provide a time-scaled accumulation of an Totalizer (TOT) structured text 1-106

analog input value.

function block

Publication 1756-RM006C-EN-P - June 2003

1-2 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Alarm (ALM)

Operands:

ALM(ALM tagq);

The ALM instruction provides alarming for any analog signal.

Structured Text

Operand: Type: Format:

Description:

ALM tag ALARM structure

ALM structure

Function Block

E ALk_01
ALM E
Alarm Operand: Type: Format: Description:
gln HHAlam B ALM tag ALARM structure ALM structure
Halarm [©
Lalarm [0
LL&larm [5
ROCFosAlam [5
FREHeailam 1 ALARM Structure
Input Parameter: Data Type: Description:;
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction always executes.
In REAL The analog signal input.
Valid = any float
Default = 0.0
HHLimit REAL The high-high alarm limit for the input.
Valid = any real value
Default = maximum positive value
HLimit REAL The high alarm limit for the input.
Valid = any real value
Default = maximum positive value
LLimit REAL The low alarm limit for the input.
Valid = any real value.
Default = maximum negative value
LLLimit REAL The low-low alarm limit for the input.
Valid = any real value
Default = maximum negative value
Deadband REAL The alarm deadband for the high-high to low-low limits.

Valid = any real value > 0.0
Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) 1-3

Input Parameter: Data Type: Description:

ROCPosLimit REAL The rate-of-change alarm limit in units per second for a positive (increasing) change in
the input. Set ROCPosLimit = 0 to disable ROC positive alarming. If invalid, the instruction
assumes a value of 0.0 and sets the appropriate bit in Status.

Valid = any real value > 0.0
Default = 0.0

ROCNegLimit REAL The rate-of-change alarm limit in units per second for a negative (decreasing) change in the
input. Set ROCPNegLimit = 0 to disable ROC negative alarming. If invalid, the instruction
assumes a value of 0.0 and sets the appropriate bit in Status.

Valid = any real value > 0.0
Default = 0.0

ROCPeriod REAL The time period used to evaluate the rate-of-change alarms (in seconds). Set ROCPeriod = 0
to disable ROC alarming and set the output ROC to zero. If invalid, the instruction assumes a
value of 0.0 and sets the appropriate bit in Status.

Valid = any real value > 0.0

Default = 0.0
Output Parameter: Data Type: Description:
EnableOut BOOL Enable output.
HHAlarm BOOL The high-high alarm indicator.
Default = false
HAlarm BOOL The high alarm indicator.
Default = false
LAlarm BOOL The low alarm indicator.
Default = false
LLAlarm BOOL The low-low alarm indicator.
Default = false
ROCPosAlarm BOOL The rate-of-change positive alarm indicator.
Default = false
ROCNegAlarm BOOL The rate-of-change negative alarm indicator.
Default = false
ROC REAL The rate-of-change output. Arithmetic status flags are set for this output.
Status DINT Status of the function block.
InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.
Deadbandinv BOOL Invalid Deadband value.
(Status.1)
ROCPosLimitinv BOOL Invalid ROCPosLimit value.
(Status.2)
ROCNegLimitinv BOOL Invalid ROCNegLimit value.
(Status.3)
ROCPeriodInv BOOL Invalid ROCPeriod value.
(Status.4)

Publication 1756-RM006C-EN-P - June 2003

1-4 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Description: The ALM instruction provides alarm indicators for high-high, high, low,

low-low, rate-of-change positive, and rate-of-change negative. An alarm
deadband is available for the high-high to low-low alarms. A user defined
period for performing rate-of-change alarming is also available.

Monitoring the ALM instruction

There is an operator faceplate available for the ALM instruction. For more
information, see appendix Function Block Faceplate Controls.

Arithmetic Status Flags: Arithmetic status flags are set for the ROC output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

All alarm outputs are cleared.
The elapsed time accumulator is cleared.

All alarm outputs are cleared.
The elapsed time accumulator is cleared.

instruction first run

All alarm outputs are cleared.
The elapsed time accumulator is cleared.

All alarm outputs are cleared.
The elapsed time accumulator is cleared.

Enableln is cleared

EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) 1-5

Example: The ALM instruction is typically used either with analog input modules (such
as 1771 1/O modules) that do not support on-board alarming or to generate
alarms on a calculated vatiable. In this example, an analog input from a
1771-IFE module is first scaled to engineering units using the SCL instruction.
The Out of the SCL instruction is an input to the ALM instruction to
determine whether to set an alarm. The resulting alarm output parameters
could then be used in your program and/or viewed on an operator interface

display.
Structured Text

SCL _01.In := InputOFroml771IFE;
SCL(SCL_01);

ALM 01.In := SCL 01.0ut;
ALARM (ALMio 1);

Function Block

Scale Alarm

InputdFram1771IFE [t In Out [(——In HHAlarm

Halarm

Lélarm
LLAlarm
ROCFosAlarm

T BT

ROCMegAlarm

Publication 1756-RM006C-EN-P - June 2003

1-6

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Discrete 2-State Device

(D2SD)

Operands:

D2SD (D2SD_tag) ;

The D2SD instruction controls a discrete device which has only two possible
states such as on/off, open/closed, etc.

Structured Text

Operand: Type: Format: Description
D2SD tag DISCRETE_2STATE structure D2SD structure
E Function Block
LD2E0_01
D250 |II
Biorete 2. State Device Operand: Type: Format: Description:
o FreaCammand out kg D2SD tag DISCRETE_2STATE structure D2SD structure
=] StateQFerm DevicelState [0
=] State1Perm Deviced State @
=] FBO CommandStatus [0
=] FB1 Faultalarm [0
=] HandFB Modeflarm 5
=] FrogFrogReq FrogQOper [
= ProgOperReq Owverride [3
= FrogOwvernideReq Hand [
=] FrogHandReq
DISCRETE_2STATE Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
ProgCommand BOOL Used to determine CommandStatus when the device is in Program control. When set, the
device is commanded to the 1 state; when cleared, the device is commanded to the 0 state.
Default is cleared.
OperOReq BOOL Operator state 0 request. Set by the operator interface to place the device in the 0 state
when the device is in Operator control.
Default is cleared.
OperlReq BOOL Operator state 1 request. Set by the operator interface to place the device in the 1 state
when the device is in Operator control.
Default is cleared.
StateOPerm BOOL State 0 permissive. Unless in Hand or Override mode, this input must be set for the device to

enter the 0 state. This input has no effect for a device already in the 0 state.
Default is set.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) 1-7

Input Parameter: Data Type: Description:

State1lPerm BOOL State 1 permissive. Unless in the Hand or Override mode, this input must be set for the
device to enter the 1 state. This input has no effect for a device already in the 1 state.
Default is set.

FBO BOOL The first feedback input available to the D2SD instruction.
Default is cleared.
FB1 BOOL The second feedback input available to the D2SD instruction.
Default is cleared.
HandFB BOOL Hand feedback input. This input is from a field hand/off/auto station and it shows the

requested state of the field device. When set, the field device is being requested to enter the
1 state; when cleared, the field device is being requested to enter the 0 state.
Default is cleared.

FaultTime REAL Fault time value. Configure the value in seconds of the time to allow the device to reach a
newly commanded state. Set FaultTime = 0 to disable the fault timer. If this value is invalid,
the instruction assumes a value of zero and sets the appropriate bit in Status.

Valid = any float > 0.0
Default = 0.0

FaultAlarmLatch BOOL Fault alarm latch input. When set and FaultAlarm is set, latch FaultAlarm. To unlatch
FaultAlarm set FaultAlmUnlatch or clear FaultAlarmLatch.
Default is cleared.

FaultAlmUnLatch BOOL Fault alarm unlatch input. Set FaultAlmUnLatch when FaultAlarmLatch is set to unlatch
FaultAlarm. The instruction clears this input.
Default is cleared.

OverrideOninit BOOL Override on initialization request. If this bit is set, then during instruction first scan, the
2-state device is placed in Operator control, Override is set, and Hand is cleared. If
ProgHandReq is set, then Override is cleared and Hand is set.
Default is cleared.

OverrideOnFault BOOL Override on fault request. Set OverrideOnFault if the device should go to Override mode and
enter the OverrideState on a fault alarm. After the fault alarm is removed, the 2-state device
is placed in Operator control.

Default is cleared.

OutReverse BOOL Reverse default out state. The default state of Out is cleared when commanded to state 0,
and set when commanded to state 1. When OutReverse is set, Out is set when commanded
to state 0, and cleared when commanded to state 1.
Default is cleared.

OverrideState BOOL Override state input. Configure this value to specify the state of the device when the device
is in Override mode. Set indicates that the device should go to the 1 state; cleared indicates
that the device should go to the 0 state.

Default is cleared.

FBOState0 BOOL Feedback 0 state 0 input. Configure the state of the FBO when the device is in the 0 state.
Default is cleared.

FBOStatel BOOL Feedback 0 state 1 input. Configure the state of the FBO when the device is in the 1 state.
Default is cleared.

FB1State0 BOOL Feedback 1 state 0 input. Configure the state of the FB1 when the device is in the 0 state.
Default is cleared.

FB1Statel BOOL Feedback 1 state 1 input. Configure the state of the FB1 when the device is in the 1 state.

Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-8 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Input Parameter: Data Type: Description:

ProgProgReq BOOL Program program request. Set by the user program to request Program control. Ignored if
ProgOperReq is set. Holding this set and ProgOperReq cleared locks the instruction into
Program control.

Default is cleared.

ProgOperReq BOOL Program operator request. Set by the user program to request Operator control. Holding this
set locks the instruction into Operator control.
Default is cleared.

ProgOverrideReq BOOL Program override request. Set by the user program to request the device to enter Override
mode. Ignored if ProgHandReq is set.
Default is cleared.

ProgHandReq BOOL Program hand request. Set by the user program to request the device to enter Hand mode.
Default is cleared.

OperProgReq BOOL Operator program request. Set by the operator interface to request Program control. The
instruction clears this input.

Default is cleared.

OperOperReq BOOL Operator operator request. Set by the operator interface to request Operator control. The
instruction clears this input.
Default is cleared.

ProgValueReset BOOL Reset program control values. When set, all the program request inputs are cleared each
execution of the instruction.
Default is cleared.

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out BOOL The output of the 2-state instruction.

DeviceOState BOOL Device 0 state output. Set when the device is commanded to the 0 state and the feedbacks
indicate the device really is in the 0 state.

DevicelState BOOL Device 1 state output. Set when the device is commanded to the 1 state and the feedbacks
indicate the device really is in the 1 state.

CommandStatus BOOL Command status output. Set when the device is being commanded to the 1 state and cleared
when the device is being commanded to the 0 state.

FaultAlarm BOOL Fault alarm output. Set if the device was commanded to a new state and the FaultTime has
expired without the feedbacks indicating that the new state has actually been reached. Also
set if, after reaching a commanded state, the feedbacks suddenly indicate that the device is
no longer in the commanded state.

ModeAlarm BOOL Mode alarm output. Set if the device is in Operator control and a program command changes
to a state which is different from the state currently commanded by the operator. This alarm
is intended as a reminder that a device was left in Operator control.

ProgOper BOOL Program/Operator control indicator. Set when in Program control. Cleared when in
Operator control.

Override BOOL Override mode. Set when the device is in the Override mode.

Hand BOOL Hand mode. Set when the device is in the Hand mode.

Status DINT Status of the function block.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) 1-9

Output Parameter: Data Type: Description:

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

FaultTimelnv (Status.1) BOOL Invalid FaultTime value. The instruction sets FaultTime = 0.

OperReqinv (Status.2) BOOL Both operator state request bits are set.

Description: The D2SD instruction controls a discrete device which has only two possible

states such as on/off, open/closed, etc. Typical discrete devices of this nature
include motors, pumps, and solenoid valves.

Monitoring the D2SD instruction

There is an operator faceplate available for the D2SD instruction. For more
information, see appendix Function Block Faceplate Controls.

Arithmetic Status Flags: Arithmetic status flags are not affected.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

The fault timer is cleared.

ModeAlarm is cleared.

All the operator request inputs are cleared.

If ProgValueReset is set, all the program request inputs are cleared.

When OverrideOninit is set, ProgOper is cleared (Operator control).

If ProgHandReq is cleared and OverrideOnlnit is set, clear Hand and set Override (Override mode).
If ProgHandReq is set, set Hand and clear Override (Hand mode).

instruction first run

ProgOper and CommandStatus are cleared. ProgOper and CommandStatus are cleared.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.

Enableln is set The instruction executes. Enableln is always set.
EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

Publication 1756-RM006C-EN-P - June 2003

1-10 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Example:

The D2SD instruction is typically used to control on-off or open-close devices
such as pumps or solenoid valves. In this example, the D2SD instruction
controls a solenoid valve adding corn syrup to a batch tank. As long as the
D28SD instruction is in Program control, the valve opens when the AddSyrup
input is set. The operator can also take Operator control of the valve to open
or close it if necessary. The solenoid valve in this example has limit switches

that indicate when the valve is fully closed or opened. These switches are wired
into the FBO and FB1 feedback inputs. This allows the D2SD instruction to
generate a FaultAlarm if the solenoid valve does not reach the commanded
state within the configured FaultTime.

Structured Text

SyrupController.ProgCommand := AddSyrup;

SyrupController.FBO

SyrupValveClosedLimitSwitch;

SyrupController.FB1l := SyrupValveOpenedLimitSwitch;

D2SD (SyrupController);

SyrupValve := SyrupController.Out;

Function Block

SyrupContraller

D250 EI
Discrete 2-State Device
——— —— 7 FregCommand Dt
=] StateOPerm DevicelState
=] State1Perm DrevicedState
SyrupalveClosedLimitSwitch ::Ei— — =] FBO CommandStatus
SyrupValveOpenedlimitSwitch)3— — =] FB1 Fault&larm
=] HandFB tdodeslarm
=] FragFrogReq FrogQOper
=] ProgOperfeg Crerride
= FrogOwverideReq Hand
=] PragHandReq

Publication 1756-RM006C-EN-P - June 2003

uuuuuuuuu[l
|
|

=] Syrupifalue

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-11

Switching between Program control and Operator control

The following diagram shows how the D2SD instruction changes between
Program control and Operator control.

(\ OperOperReq is set when ProgProgReq is cleared (\

ProgOperReq is set !

Override transitions from set to cleared and Hand is cleared

Program Control Operator Control

Hand transitions from set to cleared and Override is cleared

Yyvyy

ProgProgReq is set when ProgOperReq is cleared

OperProgReq is set when ProgOperReq is cleared and
OperOperReq is cleared

(1) The instruction remains in Operator control mode when ProgOperReq is set.

Commanded state in Program control

The following diagram illustrates how the D2SD instruction operates when in
Program control.

O C

ProgCommand is cleared
StateOPerm is set

Set Command Status] Clear Command Status
ProgCommand is set

StatelPerm is set

N N

Publication 1756-RM006C-EN-P - June 2003

1-12 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Commanded state in Operator control

The following diagram illustrates how the D2SD instruction operates when in
Operator control.

R Y

OperOReq is set
StateOPerm is set

Set Command Status) Cleared Command Status
OperlReq is set

StatelPerm is set

. N

If both OperOReq and OperlReq are set:

e the instruction sets the appropriate bit in Status

o if Override and Hand are cleared, the instruction holds the
previous state.

After every instruction execution, the instruction:
e clears all the operator request inputs

e if ProgValueReset is set, clears all the program request inputs

Hand mode or Override mode

The following table describes how the D2SD instruction determines whether
to operate in Hand or Override mode

ProgHandReq: ProgOverrideReq: FaultAlarm and Description:
OverrideOnFault:
set either either Hand mode
Hand is set

Override is cleared

cleared set either Override mode
Hand is cleared
Override is set

cleared either set Override mode
Hand is cleared
Override is set

When the instruction is in Override mode, CommandStatus = OverrideState

When the instruction is in Hand mode, CommandStatus = HandFB

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-13

Output state

The D2SD output state is based on the state of the command status.

CommandsStatus:

Output state:

cleared

if OutReverse is cleared, Out is cleared
if OutReverse is set, Out is set

set

if OutReverse is cleared, Out is set
if OutReverse is set, Out is cleared

cleared and
FBO = FBOState0 and
FB1 = FB1State0

the fault timer is stopped and cleared
DeviceOState is set

set and
FBO = FBOStatel and
FB1 = FB1Statel

the fault timer is stopped and cleared
DevicelState is set

Fault alarm conditions

The D2SD instruction checks for these fault alarm conditions.

Fault alarm condition resulting from: Rules:

device state was commanded to change, but the feedback ~ Start the fault timer when CommandStatus,, = CommandStatus,,.;
did not indicate that the desired state was actually Set FaultAlarm when fault timer is done and FaultTime > 0.0

reached within the FaultTime.

the device unexpectedly leaving a state (according to the Set FaultAlarm when the fault timer is not timing and one of the following

feedback) without being commanded to. conditions is satisfied:

CommandStatus is cleared and DeviceOState is cleared
CommandStatus is set and DevicelState is cleared

FaultAlarm is cleared if one of the following conditions is met:

o CommandStatus is cleared and DeviceOState is set

o CommandStatus is set and DevicelState is set

e FaultTime <0

FaultAlarm cannot be cleared when FaultAlarmIatch is set, unless
FaultAlmUnlatch is set and no fault is present.

Publication 1756-RM006C-EN-P - June 2003

1-14 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Publication 1756-RM006C-EN-P - June 2003

Mode alarm conditions

The mode alarm reminds an operator that a device has been left in operator
control. The mode alarm only turns on when in operator control mode, the
program tries to change the state of the device from the operator’s
commanded state. The alarm does not turn on if an operator places a device in
operator mode and changes the state. The D2SD instruction checks for mode
alarm conditions, using these rules.

ModeAlarm: When:

set ProgCommand,, = ProgCommand,,_; and
ProgCommand,, = CommandStatus

cleared ProgCommand = CommandStatus or
the device is in override, hand, or program
control mode

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

1-15

Discrete 3-State Device
(D3SD)

Operands:

D3SD(D3SD_tag) ;

E Dasr_01

L350 =
[izcrete 3-State Device

I FrogdCommand Dutd
= ProgiCommand Dt
= FrogZCommand Q2
] StatelPerm DevicelOState
5| State1FPerm [rewicedState
] StateZFerm DeviceZ State
= FBO CommanddStatus
= FB1 CommandiStatus
5 FBZ CommandzStatus
5 FB= Fault®larm
If| HandFEBOQ hodedlarm
5] HandFBEA1 FrogQper
& HandFBZ Dvrerride
5| ProgProgReq Hand
5| FrogOperReq
I ProgQverideReag
@] FrogHandReq

| I I B I N Y N I Y N I 1 B B

The D3SD instruction controls a discrete device having three possible states

such as fast/slow/off, forward/stop/reverse, etc.

Structured Text

Operand: Type: Format: Description:

D3SD tag DISCRETE_3STATE structure D3SD structure

Function Block

Operand: Type: Format: Description:

D3SD tag DISCRETE_3STATE structure D2SD structure

DISCRETE_3STATE Structure

Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
Prog0Command BOOL Program state 0 command. This input determines the device state when the device is in
Program control. If set, the device is commanded to the 0 state.
Default is cleared.
Prog1Command BOOL Program state 1 command. This input determines the device state when the device is in
Program control. If set, the device is commanded to the 1 state.
Default is cleared.
Prog2Command BOOL Program state 2 command. This input determines the device state when the device is in

Program control. If set, the device is commanded to the 2 state.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-16 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Input Parameter: Data Type: Description:

OperOReq BOOL Operator state 0 request. Set by the operator interface to place the device into the 0 state
when the device is in Operator control.

Default is cleared.

OperlReq BOOL Operator state 1 request. Set by the operator interface to place the device into the 1 state
when the device is in Operator control.
Default is cleared.

Oper2Req BOOL Operator state 2 request. Set by the operator interface to place the device into the 2 state
when the device is in Operator control.
Default is cleared.

StateOPerm BOOL State 0 permissive. Unless in Hand or Override mode, this input must be set for the device to
enter the 0 state. This input has no effect if the device is already in the 0 state.
Default is set.

StatelPerm BOOL State 1 permissive. Unless in Hand or Override mode, this input must be set for the device to
enter the 1 state. This input has no effect if the device is already in the 1 state.
Default is set.

State2Perm BOOL State 2 permissive. Unless in Hand or Override mode, this input must be set for the device to
enter the 2 state. This input has no effect if the device is already in the 2 state.
Default is set.

FBO BOOL The first feedback input available to the instruction.
Default is cleared.

FB1 BOOL The second feedback input available to the instruction.
Default is cleared.

FB2 BOOL The third feedback input available to the instruction.
Default is cleared.

FB3 BOOL The fourth feedback input available to the instruction.
Default is cleared.

HandFBO BOOL Hand feedback state 0. This input from a field hand/off/auto station shows the requested
state of the field device. Set indicates that the field device is being requested to enter the
0 state; cleared indicates that the field device is being requested to enter some other state.
Default is cleared.

HandFB1 BOOL Hand feedback state 1. This input from a field hand/off/auto station shows the requested
state of the field device. Set indicates that the field device is being requested to enter the
1 state; cleared indicates that the field device is being requested to enter some other state.
Default is cleared.

HandFB2 BOOL Hand feedback state 2. This input from a field hand/off/auto station shows the requested
state of the field device. Set indicates that the field device is being requested to enter the
2 state; cleared indicates that the field device is being requested to enter some other state.
Default is cleared.

FaultTime REAL Fault time value. Configure the value in seconds of the time to allow the device to reach a
newly commanded state. Set FaultTime = 0 to disable the fault timer. If this value is invalid,
the instruction assumes a value of zero and sets the appropriate bit in Status.

Valid = any float > 0.0
Default = 0.0
FaultAlarmLatch BOOL Fault alarm latch input. When set and FaultAlarm is set, latch FaultAlarm. To unlatch

FaultAlarm, set FaultAlmUnlatch or clear FaultAlarmLatch.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-17

Input Parameter: Data Type: Description:

FaultAlmUnLatch BOOL Fault alarm unlatch input. Set this input when FaultAlarmLatch is set to unlatch FaultAlarm.
The instruction clears this input.

Default is cleared.

OverrideOnlnit BOOL Override on initialization request. If this bit is set, then during instruction first scan, the
instruction is placed in Operator control with Override set and Hand cleared. If ProgHandReq
is set, then Override is cleared and Hand is set.

Default is cleared.

OverrideOnFault BOOL Override on fault request. Set this value if the device should go to Override mode and enter
the OverrideState on a fault alarm. After the fault alarm is removed, the instruction is
placed in Operator control.

Default is cleared.

OutOState0 BOOL Output 0 state 0 input. This value determines the value of OutputO when the device is in the
0 state.

Default is cleared.

OutOStatel BOOL Output 0 state 1 input. This value determines the value of Output0 when the device is in the
1 state.

Default is cleared.

OutOState2 BOOL Output 0 state 2 input. This value determines the value of OutputO when the device is in the
2 state.

Default is cleared.

Out1State0 BOOL Output 1 state 0 input. This value determines the value of Outputl when the device is in the
0 state.

Default is cleared.

Out1Statel BOOL Output 1 state 1 input. This value determines the value of Outputl when the device is in the
1 state.

Default is cleared.

OutlState2 BOOL Output 1 state 2 input. This value determines the value of Outputl when the device is in the
2 state.

Default is cleared.

Out2State0 BOOL Output 2 state 0 input. This value determines the value of Output2 when the device is in the
0 state.

Default is cleared.

Out2Statel BOOL Output 2 state 1 input. This value determines the value of Output2 when the device is in the
1 state.

Default is cleared.

Out2State2 BOOL Output 2 state 2 input. This value determines the value of Qutput2 when the device is in the
2 state.

Default is cleared.
OverrideState DINT Override state input. Set this input to indicate the state of the device when in Override mode.

Value: Indicates:

2 device should go to the 2 state
1 device should go to the 1 state
0 device should go to the 0 state

An invalid value sets the appropriate bit in Status and prevents the instruction from entering
the override state.

Valid=0to 2

Default =0

Publication 1756-RM006C-EN-P - June 2003

1-18 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Input Parameter:

Data Type:

Description:

FBOState0

BOOL

Feedback 0 state 0 input. This value determines the expected value of FBO when the device is
in the 0 state.
Default is cleared.

FBOStatel

BOOL

Feedback 0 state 1 input. This value determines the expected value of FBO when the device is
in the 1 state.
Default is cleared.

FBOState2

BOOL

Feedback 0 state 2 input. This value determines the expected value of FBO when the device is
in the 2 state.
Default is cleared.

FB1State0

BOOL

Feedback 1 state 0 input. This value determines the expected value of FB1 when the device is
in the 0 state.
Default is cleared.

FB1Statel

BOOL

Feedback 1 state 1 input. This value determines the expected value of FB1 when the device is
in the 1 state.
Default is cleared.

FB1State2

BOOL

Feedback 1 state 2 input. This value determines the expected value of FB1 when the device is
in the 2 state.
Default is cleared.

FB2State0

BOOL

Feedback 2 state 0 input. This value determines the expected value of FB2 when the device is
in the 0 state.
Default is cleared.

FB2Statel

BOOL

Feedback 2 state 1 input. This value determines the expected value of FB2 when the device is
in the 1 state.
Default is cleared.

FB2State2

BOOL

Feedback 2 state 2 input. This value determines the expected value of FB2 when the device is
in the 2 state.
Default is cleared.

FB3State0

BOOL

Feedback 3 state 0 input. This value determines the expected value of FB3 when the device is
in the 0 state.
Default is cleared.

FB3Statel

BOOL

Feedback 3 state 1 input. This value determines the expected value of FB3 when the device is
in the 1 state.
Default is cleared.

FB3State2

BOOL

Feedback 3 state 2 input. This value determines the expected value of FB3 when the device is
in the 2 state.
Default is cleared.

ProgProgReq

BOOL

Program program request. Set by the user program to request Program control. Ignored if
ProgOperReq is set. Holding this set and ProgOperReq cleared locks the instruction in
Program control.

Default is cleared.

ProgOperReq

BOOL

Program operator request. Set by the user program to request operator control. Holding this
set locks the instruction in Operator control.
Default is cleared.

ProgOverrideReq

BOOL

Program override request. Set by the user program to request the device to enter Override
mode. Ignored if ProgHandReq is set.
Default is cleared.

ProgHandReq

BOOL

Program hand request. Set by the user program to request the device to enter Hand mode.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-19

Input Parameter: Data Type: Description:

OperProgReq BOOL Operator program request. Set by the operator interface to request Program control. The
instruction clears this input.

Default is cleared.

OperOperReq BOOL Operator operator request. Set by the operator interface to request Operator control. The
instruction clears this input.
Default is cleared.

ProgValueReset BOOL Reset program control values. When set, all the program request inputs are cleared each
execution of the instruction.
Default is cleared.

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out0 BOOL The first output of the instruction.

Outl BOOL The second output of the instruction.

Out2 BOOL The third output of the instruction.

DeviceOState BOOL Device 0 state output. Set when the device is commanded to the 0 state and the feedback
indicates the device really is in the 0 state.

DevicelState BOOL Device 1 state output. Set when the device is commanded to the 1 state and the feedback
indicates the device really is in the 1 state.

Device2State BOOL Device 2 state output. Set when the device is commanded to the 2 state and the feedback
indicates the device really is in the 2 state.

Command0Status BOOL Device 0 command status. Set when the device is being commanded to the 0 state; cleared
when the device is being commanded to some other state.

Command1Status BOOL Device 1 command status. Set when the device is being commanded to the 1 state; cleared
when the device is being commanded to some other state.

Command2Status BOOL Device 2 command status. Set when the device is being commanded to the 2 state; cleared
when the device is being commanded to some other state.

FaultAlarm BOOL Fault alarm output. Set if the device has been commanded to a new state, and the FaultTime
has expired without the feedback indicating that the new state has actually been reached.
Also set if, after reaching a commanded state, the feedbacks suddenly indicate that the
device is no longer in the commanded state.

ModeAlarm BOOL Mode alarm output. Set if the device is in operator control and a program command changes
to a state which is different from the state currently commanded by the operator. This alarm
is intended as a reminder that a device was left in Operator control.

ProgOper BOOL Program/operator control indicator. Set when in Program control. Cleared when in
Operator control.

Override BOOL Override mode. Set when the device is in the Override mode.

Hand BOOL Hand mode. Set when the device is in the Hand mode.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

FaultTimelnv (Status.1) BOOL

Invalid FaultTime value. The instruction sets FaultTime = 0.

Publication 1756-RM006C-EN-P - June 2003

1-20 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Output Parameter: Data Type: Description:

OverrideStatelnv BOOL The Override value is out of range

(Status.2)

ProgCommandinv BOOL Multiple program state command bits are set at the same time.
(Status.3)

OperReqInv (Status.4) BOOL Multiple operator state request bits are set at the same time.
HandCommandinv BOOL Multiple hand state request bits are set at the same time.
(Status.5)

Description: The D3SD instruction controls a discrete device having three possible states
such as fast/slow/off, forward/stop/reverse, etc. Typical discrete devices of
this nature include feeder systems, reversible motors, etc.

Monitoring the D3SD instruction
There is an operator faceplate available for the D3SD instruction. For more
information, see appendix Function Block Faceplate Controls.
Arithmetic Status Flags: Arithmetic status flags are not affected.
Fault Conditions: none
Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

The fault timer is cleared.

ModeAlarm is cleared.

All the operator request inputs are cleared.

If ProgValueReset is set, all the program request inputs are cleared.

When OverrideOninit is set, ProgOper is cleared (Operator control).

If ProgHandReq is cleared and OverrideOninit is set, clear Hand and set Override (Override mode).
If ProgHandReq is set, set Hand and clear Override (Hand mode).

instruction first run

ProgOper and CommandStatus are cleared. ProgOper and CommandStatus are cleared.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.

Enableln is set The instruction executes. Enableln is always set.
EnableQut is set. The instruction executes.
postscan No action taken. No action taken.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-21

Example:

The D3SD instruction is typically used to control 3-state devices such as
high/low/off feed systems. In this example, the D3SD instruction controls a
feed system consisting of a pair of solenoid valves adding vegetable oil to a
batch tank. One of the valves is on a large diameter feed pipe into the batch
tank, and the other valve is plumbed in parallel on a small diameter feed pipe.
When oil is first added, the D3SD instruction is commanded to the fast feed
state (state 2) where both valves are opened. When the oil added approaches
the target amount, the D3SD instruction is commanded to the slow feed state
(state 1) where the “large valve” is closed and the “small valve” is kept open.
When the target is reached, the D3SD instruction is commanded to go to the
off state (state 0) and both valves are closed.

As long as the D3SD instruction is in Program control, the valves open
according to the CloseOilFeed, SlowOilFeed, and FastOilFeed inputs. The
operator can also take Operator control of the feed system if necessary. The
solenoid valves in this example have limit switches which indicate when the
valves are fully closed or opened. These switches are wired into the FBO, FB1,
FB2, and FB3 feedback inputs. This allows the D3SD instruction to generate a
FaultAlarm if the solenoid valves do not reach their commanded states within
the configured FaultTine.

Publication 1756-RM006C-EN-P - June 2003

1-22

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Structured Text

OilFeedController.
OilFeedController.

OilFeedController

OilFeedController.
OilFeedController.
OilFeedController.
OilFeedController.

.Prog2Command :=

FBO
FB1
FB2
FB3

ProgOCommand

ProglCommand

D3SD (OilFeedController) ;

SmallOilvValve

LargeOilvValve

Function Block

CloseOilFeed;
SlowOilFeed;
FastOilFeed;

SmallOilvValveClosed;

SmallOilValveOpened;

LargeOilValveClosed;

LargeOilValveOpened;

OilFeedController.OutO;

OilFeedController.Outl;

OilFeedContraller

ClozeQilFeed

|
4

SlomOilFeed

FastOilFead

||
b

SmalldilvahreClosed

SmalldilvalveOpenad

LargeQilvalveClosed

oI
o —
o
b —

LargeQilvaheOpened

Publication 1756-RM006C-EN-P - June 2003

I i B B B] A A A A MM

L3sDh D
Dizcrete 3-State Device

FrogdCommand Cutd
FrogiCommand Outl
Frog2Command autz
StateOPerm DrevicedState
State1Perm Crevice 1 State
StateZPerm Drevicez State
FBO CommanddsStatus
FEA1 CommandiStatus
FBZ CommandZsStatus
FBZ Fault&larm
HandFBO Modedlarm
HandFB1 FrogQOper
HandFBZ Orverride
FrogProgheq Hand
FrogOperReq

FrogQuerideReq
FrogHandReq

L] O B R C B Y C B T T

SmallQilvalve
LargeQilvalve

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-23

O

Switching between Program control and Operator control

The following diagram shows how the D3SD instruction changes between
Program control and Operator control.

OperOperReq is set when ProgProgReq is cleared / \

ProgOperReq is set ¥

Override transitions from set to cleared and Hand is cleared
Operator Control

Program Control

Hand transitions from set to cleared and Override is cleared

Yyvyy

ProgProgReq is set when ProgOperReq is cleared

OperProgReq is set when ProgOperReq is cleared and
OperOperReq is cleared

(1) The instruction remains in Operator control mode when ProgOperReq is set.

Commanded state in Program control

The following table describes how the D3SD instruction operates when in
Program control.

Prog0 Progl Prog2 State0 Statel State2 Description:

Command: Command: Command: Perm: Perm: Perm:

cleared cleared set either either set Command0Status is cleared
Command1Status is cleared
Command2Status is set

cleared set cleared either set either Command0Status is cleared
Command1Status is set
Command2Status is cleared

set cleared cleared set either either Command0Status is set

Command1Status is cleared
Command2Status is cleared

If more than one program command input is set:
e the instruction sets the appropriate bit in Status

e if Override and Hand are cleared, the instruction holds the
previous state

Publication 1756-RM006C-EN-P - June 2003

1-24 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Commanded state in Operator control

The following table describes how the D3SD instruction operates when in
Operator control.

OperOReq: OperlReq: Oper2Req: State0 Statel State2 Description:
Perm: Perm: Perm:
cleared cleared set either either set Command0Status is cleared

Command1Status is cleared
Command?2Status is set

cleared set cleared either set either Command0Status is cleared
Command1Status is set
Command2Status is cleared

set cleared cleared set either either Command0Status is set
Command1Status is cleared
Command2Status is cleared

If more than one operator command input is set:
e the instruction sets the appropriate bit in Status

o if Override and Hand are cleared, the instruction holds the
previous state

After every instruction execution, the instruction:
e clears all the operator request inputs

e if ProgValueReset is set, clears all the program request inputs

Hand mode or Override mode

The following table shows how the D3SD instruction determines whether to
operate in Hand or Override mode

ProgHandReq: ProgOverrideReq; FaultAlarm and Description:;
OverrideOnFault:
set either either Hand mode
Hand is set

Override is cleared

cleared set either Override mode
Hand is cleared
Override is set

cleared either set Override mode
Hand is cleared
Override is set

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-25

When Override is set, it takes precedence over Program and Operator control.
The following table describes how the Override mode affects the commanded

state.

Override: Override State: Description:

set 2 CommandO0Status is cleared
Command1Status is cleared
Command2Status is set

set 1 CommandOStatus is cleared
Command1Status is set
Command2Status is cleared

set 0 CommandOQStatus is set

Command1Status is cleared
Command2Status is cleared

If OverrideState is invalid, the instruction sets the appropriate bit in Status and
does not enter the override state.

When Hand is set, it takes precedence over Program and Operator control.
The following table describes how the hand mode affects the commanded

state.

Hand: HandFBO: HandFB1: HandFB2: Description:

set cleared cleared set CommandOStatus is cleared
Command1Status is cleared
Command2Status is set

set cleared set cleared CommandO0Status is cleared
Command1Status is set
Command2Status is cleared

set set cleared cleared Command0Status is set

Command1Status is cleared
Command2Status is cleared

If more than one HandFB input is set, the instruction sets the appropriate bit
in Status and, if Hand is set, the instruction holds the previous state.

Publication 1756-RM006C-EN-P - June 2003

1-26 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Output state

The D3SD output state is based on the state of the command status.

CommandsStatus: Output state:

CommandOQStatus is set Out0 = Out0State0
Outl = Outl1State0
Out2 = Out2State0

Command0Status is set and stop and clear the fault timer
FBO = FBOState0 and DeviceOState is set

FB1 = FB1State0 and

FB2 = FB2State0 and

FB3 = FB3State0

Command1Status is set Out0 = OutOStatel
Outl = Out1Statel
Out2 = Qut2Statel

Command1Status is set and stop and clear the fault timer,
FBO = FBOStatel and DevicelState is set

FB1 = FB1Statel and

FB2 = FB2Statel and

FB3 = FB3Statel

Command2Status is set Out0 = OutOState?
Outl = Qut1State2
Out2 = Qut2State2

Command2Status is set and stop and clear the fault timer
FBO = FBOState2 and Device2State is set

FB1 = FB1State2 and

FB2 = FB2State2 and

FB3 = FB3State2

Fault alarm conditions

The D3SD instruction checks for these fault alarm conditions.

Fault alarm condition resulting from: Rules:

device state was commanded to change, but the feedback ~ Start the fault timer when CommandOStatus,, = Command0Status,,., or
did not indicate that the desired state was actually Command?Status, # Command1Status;, or

reached within the FaultTime. Command2Status,, = Command2Status,, ;
Set FaultAlarm when the fault timer done and FaultTime > 0.0

the device unexpectedly leaving a state (according to the Set FaultAlarm when fault timer is not timing and one of the following
feedback) without being commanded to. conditions is satisfied:
CommandOStatus is set and DeviceOState is cleared
Command1Status is set and DevicelState is cleared
Command2Status is set and Device2State is cleared

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-27

If there is no fault present, FaultAlarm is cleared if one of the following
conditions is met:

e CommandOStatus is set and DeviceOState is set
o Command1Status is set and DevicelState is set
o Command2Status is set and Device2State is set
e FaultTime <0

FaultAlarm cannot be cleared when FaultAlarmIatch is set, unless
FaultAlmUnlatch is set and no fault is present.

Mode alarm conditions

The mode alarm reminds an operator that a device has been left in Operator
control. The mode alarm only turns on when in Operator control, the program
tries to change the state of the device from the operator’s commanded state.
The alarm does not turn on if an operator places a device in Operator control
and changes the mode. The D3SD instruction checks for mode alarm
conditions, using these rules.

ModeAlarm: When:

set Prog2Command = Prog2Command,,.; and
Prog2Command = Command2Status or

ProglCommand = ProglCommand,,_; and
ProglCommand = Command1Status or

Prog0Command = Prog0Command,,.; and
Prog0Command = Command0Status

cleared Prog2Command = Command2Status and
ProglCommand = Command1Status and
Prog0Command = Command0Status or
the device is in override, hand, or program
control mode

Publication 1756-RM006C-EN-P - June 2003

1-28 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Deadtime (DEDT)

Operands:

DEDT (DEDT_tag, storage) ;

E DEDT_OM
DEDT D
Lreadtime
OlIn Cut O
Storagefuray

The DEDT instruction performs a delay of a single input. You select the
amount of deadtime delay.

Structured Text

Operand: Type: Format: Description:
DEDT tag DEADTIME structure DEDT structure
storage REAL array deadtime buffer

Function Block

Operand: Type: Format: Description:
DEDT tag DEADTIME structure DEDT structure
storage REAL array deadtime buffer

DEADTIME Structure

Input Parameter:

Data Type:

Description:

Enableln

BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

REAL

The analog signal input to the instruction.
Valid = any float
Default = 0.0

InFault

BOOL

Bad health indicator for the input. If the input value is read from an analog input, then InFault
is controlled by fault status on the analog input. If set, InFault indicates that the input signal
has an error, the instruction sets the appropriate bit in Status, the control algorithm is not
executed, and Out is held.

Default is cleared.

Cleared = good health

Deadtime

REAL

Deadtime input to the instruction. Enter the deadtime in seconds. If this value is invalid, the
instruction assumes a value of zero and sets the appropriate bit in Status.

Valid = 0.0 to (StorageArray size * DeltaT)

Default = 0.0

Gain

REAL

Gain input to the instruction. The value of In is multiplied by this value. This allows
simulation of a process gain.

Valid = any float

Default = 1.0

Bias

REAL

Bias input to the instruction. The value of In multiplied by the Gain is added to this value. This
allows simulation of an ambient condition.

Valid = any float

Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-29

Input Parameter: Data Type: Description:
TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode
Valid=0to 2
Default=0
For more information about timing modes, see appendix Function Block Attributes.
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0
RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default =1
RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default =0
Output Parameter; Data Type: Description;
EnableOut BOOL Enable output.
Out REAL The calculated output of the deadtime algorithm. Arithmetic status flags are set for
this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.
Status DINT Status of the function block.
InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.
InFaulted (Status.1) BOOL In health is bad.
Deadtimelnv (Status.2) BOOL Invalid Deadtime value.
TimingMode BOOL Invalid TimingMode value.
(Status.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.
(Status.29)
RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.
(Status.30)
DeltaTlnv (Status.31) BOOL Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

1-30 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Description:

Publication 1756-RM006C-EN-P - June 2003

The DEDT instruction uses a data buffer to store delayed data, thereby
allowing any length deadtime desired. The DEDT instruction is designed to
execute in a task where the scan rate remains constant.

To use the DEDT instruction, create a storage array to store the deadtime
buffer to hold the samples of (In x Gain) + Bias. The storage array should be
large enough to hold the largest desired deadtime, using this formula:

StorageArray Size Needed = Maximum Deadtime (secs) / DeltaT (secs)

Servicing the deadtime buffer

During runtime, the instruction checks for a valid Deadtime. Deadtime must
be between 0.0 and (StorageArray Size x DeltaT).

If the Deadtime is invalid, the instruction sets an appropriate Status bit and
sets Out = (In x Gain) + Bias.

The deadtime buffer functions as a first-in, first-out buffer. Every time the
deadtime algorithm executes, the oldest value in the deadtime buffer is moved
into Out. The remaining values in the buffer shift downward and the value ((In
x Gain) + Bias) is moved to the beginning of the deadtime buffer. A new value
that is placed in the deadtime buffer appears in the Out after Deadtime
seconds.

The number of array elements required to perform the programmed delay is
calculated by dividing Deadtime by DeltaT. If Deadtime is not evenly divisible
by DeltaT, then the number of array elements and the programmed delay are
rounded to the nearest increment of DeltaT. For example, to find the number
of array elements required to perform the programmed delay given Deadtime
= 4.25s and DeltaT = 0.50s:

4.25s / 0.50s = 8.5

rounds up to 9 array elements required
The actual delay applied to the input in this example is:

number of array elements x DeltaT = programmed delay or
9x0.5s =4.5s

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-31

Runtime changes to either Deadtime or DeltaT change the point in which
values are moved out of the buffer. The number of elements required to
perform the programmed delay can either increase or decrease. Prior to
servicing the deadtime buffer, the following updates occur:

e If the number of required elements needs to increase, the new buffer
elements are populated with the oldest value in the current deadtime

buffer.

e If the number of required elements needs to decrease, the oldest
elements of the current deadtime buffer are discarded.

Instruction behavior on InFault transition.

When InFault is set (bad), the instruction suspends execution, holds the last
output, and sets the appropriate bit in Status.

When InFault transitions from set to cleared, the instruction sets Out and all
values in the deadtime buffer equal to In x Gain + Bias.

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions:

none
Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

If InFault is cleared, Out and all values in the deadtime buffer are set equal to (In x Gain + Bias).

instruction first run

If InFault is cleared, Out and all values in the deadtime buffer are set equal to (In x Gain + Bias).

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.

Enableln is set The instruction executes. Enableln is always set.
EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

Publication 1756-RM006C-EN-P - June 2003

1-32 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Example: 1In this example, the DEDT instruction simulates a deadtime delay in a
simulated process. The output of the PIDE instruction is passed through a
deadtime delay and a first-order lag to simulate the process. The array
DEDT_Olarray is a REAL array with 100 elements to support a deadtime of
up to 100 samples. For example, if this routine executes every 100 msec, the
array would support a deadtime of up to 10 seconds.

Structured Text

DEDT 0l1.In := SimulatedLoop.CVEU;
DEDT (DEDT_01,DEDT Olarray);

LDLG 01.In := DEDT 01.0Out;

LDLG (LDLG_01) ;

SimulatedLoop.PV :=
PIDE (SimulatedLoop) ;

Function Block

LDLG _01.0ut;

DEDLT_0O41 LDL_01 SimulatedLoop
DEDLT El LDl El FIDE El
Lreadtime Lead-Lag Enhanged FIL

In Out — In Out ———— PV CWEL

Storagesuray DEDT_Odarray O 5PFrog SP O

[SFCascade FWHHAlarm [

O RatioPrag PWHALRIM- [

O cWPrag FWLlalarm [£

O FF PWLLAlarm £

] HandFE FWROCPasAlarm [0

] FrogFrogReq FWROCHegAlarm 5

=] FrogOperReq CrevHHAlZmm [

] FrogCazRatReq DevHAlarm [

= FrogAutoReq DevlAlarm £

=] FroghlanualReq Dewllalarm =

] FrogQwerideReq FrogQOper [0

=} FrogHandReq CazRat [

Auto [

Manual @

Cweride 5

Hand [

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

1-33

Function Generator (FGEN)

Operands:

FGEN (FGEN_tag,X1,Y1,X2,Y2);

E FGEN_O1

FGEM D

Function Generator

qn Out 4
XA

A

H2
W2

The FGEN instruction converts an input based on a piece-wise

linear function.

Structured Text

Operand: Type:

Format:

Description:;

FGENtag FUNCTION_

GENERATOR

structure

FGEN structure

X1 REAL

array

X-axis array, table one. Combine with the
Y-axis array, table one to define the points of
the first piece-wise linear curve.

valid = any float

Y1 REAL

array

Y-axis array, table one. Combine with the
X-axis array, table one to define the points of
the first piece-wise linear curve.

valid = any float

X2 REAL

array

(optional)

X-axis array, table two. Combine with the
Y-axis array, table two to define the points of
the second piece-wise linear curve.

valid = any float

Y2 REAL

array

(optional)

Y-axis array, table two. Combine with the
X-axis array, table two to define the points of
the second piece-wise linear curve.

valid = any float

Function Block

The operands are the same as for the structured text FGEN instruction.

Publication 1756-RM006C-EN-P - June 2003

1-34 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

FUNCTION_GENERATOR Structure

Input Parameter: Data Type:

Description:

Enableln BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

In REAL

The analog signal input to the instruction.
Valid = any float
Default = 0.0

XY1Size DINT

Number of points in the piece-wise linear curve to use from table one. If the value is less
than one and Select is cleared, the instruction sets the appropriate bit in Status and the
output is not changed.

Valid = 1 to (smallest of X1 and Y1 array sizes)

Default =1

XY2Size DINT

Number of points in the piece-wise linear curve to use from table two. If the value is less
than one and Select is set, the instruction sets the appropriate bit in Status and the output is
not changed.

Valid = 0 to (smallest of X2 and Y2 array sizes)

Default =0

Select BOOL

This input determines which table to use. When cleared, the instruction uses table one.
When set, the instruction uses table two.
Default is cleared.

Output Parameter: Data Type:

Description:;

EnableOut BOOL Enable output.
Out REAL Output of the instruction. Arithmetic status flags are set for this output.
Status DINT Status of the function block.

InstructFault (Status.0) BOOL

Instruction generated a fault.

XY1Sizelnv (Status.1) BOOL

Size of table 1 is invalid or not compatible with the array size.

XY2Sizelnv (Status.2) BOOL

Size of table 2 is invalid or not compatible with the array size.

XisOutofOrder BOOL
(Status.3)

The X parameters are not sorted.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-35

Description:

The following illustration shows how the FGEN instruction converts a
twelve-segment curve:

Arithmetic Status Flags:

XZ X3 X4 XS X6 X7 XS X9 X]O X]I XlZ X13

In

The X-axis parameters must follow the relationship:
X[1] < X[2] < X[3] < ... < X[XY<n>Size],

where XY <n>Size > 1 and is a number of points in the piece-wise linear curve
and where n is 1 or 2 for the table selected. You must create sorted X-axis
elements in the X arrays.

The Select input determines which table to use for the instruction. When the
instruction is executing on one table, you can modify the values in the other
table. Change the state of Select to execute with the other table.

Before calculating Out, the X axis parameters are scanned. If they are not
sorted in ascending order, the appropriate bit in Status is set and Out remains
unchanged. Also, if XY1Size or XY2Size is invalid, the instruction sets the
appropriate bit in Status and leaves Out unchanged.

The instruction uses this algorithm to calculate Out based on In:
e When In < X][1], set Out = Y[1]
e When In > X[XY<n>Size|, set Out = Y[XY<n>Size]
e When X[n] < In < X[n+1], calculate Out =
((Y[n+1]-Yn)/ X[n+1]-Xn))*(In-Xn)+Yn

Arithmetic status flags are set for the Out output.

Publication 1756-RM006C-EN-P - June 2003

1-36 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Fault Conditions:

nonec
Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

No action taken.

No action taken.

Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

The instruction executes.
EnableQut is set.

Enableln is set Enableln is always set.

The instruction executes.

postscan No action taken. No action taken.

Example: The FGEN instruction characterizes a flow signal which is then totalized using

a TOT instruction. The FGEN_01X1 and FGEN_01Y1 arrays are REAL
arrays of 10 elements each to support up to a 9 segment curve. You can use
arrays of any size to support a curve of any desired number of segments.

Structured Text

FGEN O1.IN := Local:1:I.ChOData;
FGEN (FGEN 01,FGEN 01X1,FGEN 01Y1l);

FlowTotal.In := FGEN 01.0ut;
TOT (FlowTotal) ;

Function Block

FGEN_O4

FZEN EI TOT EI

Function Generator

- In ot—— Total
3
I
&
3
q

FlowTatal

Totalizer

> FGEM_O1x4 5| ProgProgReq a1dTatal

FEM_O1% f| FrogOperReq FrogQOper

Nl
2 T 5| ProgStatReqg RunStop
2 o

f| FrogStopReqg FrogResetlane

=| ProgRezetReq TargetFlag
TargetheviFlag

TargethavZFlag

|2 3 N O I B C B I

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-37

Lead-Lag (LDLG)

Operands:

LDLG (LDLG_tagq) ;

LLE_04

Lead-Lag Filter

LDl E

Out O

The LDLG instruction provides a phase lead-lag compensation for an input
signal. This instruction is typically used for feedforward PID control or for
process simulations.

Structured Text

Operand: Type: Format: Description:
LDLG tag LEAD LAG structure LDLG structure

Function Block

Operand: Type: Format: Description:
LDLG tag LEAD_LAG structure LDLG structure

LEAD_LAG Structure

Input Parameter:

Data Type:

Description;

Enableln

BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

REAL

The analog signal input to the instruction.
Valid = any float
Default = 0.0

Initialize

BOOL

Request to initialize filter control algorithm. When Initialize is set, Out = (In x Gain) + Bias.
Default = cleared.

Lead

REAL

The lead time in seconds. Set Lead = 0.0 to disable the lead control algorithm. If Lead < 0.0,
the instruction sets the appropriate bit in Status and limits Lead to 0.0. If Lead > maximum
positive float, the instruction sets the appropriate bit in Status.

Valid = any float > 0.0

Default =0.0

Lag

REAL

The lag time in seconds. The minimum lag time is DeltaT/2. If Lag < DeltaT/2, the instruction
sets the appropriate bit in Status and limits Lag to DeltaT/2. If Lag > maximum positive float,
the instruction sets the appropriate bit in Status.

Valid = any float > DeltaT/2

Default = 0.0

Gain

REAL

The process gain multiplier. This value allows the simulation of a process gain. The In signal
is multiplied by this value. |=(Inx Gain) + Bias

Valid = any float

Default = 1.0

Publication 1756-RM006C-EN-P - June 2003

1-38 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Input Parameter: Data Type: Description:
Bias REAL The process offset level. This value allows the simulation of an ambient condition. This value
is summed with the results of the multiplication of In times Gain. |=(Inx Gain) + Bias
Valid = any float
Default = 0.0
TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode
Valid=0to 2
Default =0
For more information about timing modes, see appendix Function Block Attributes.
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0
RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default =1
RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default =0
Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are used for this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

LeadInv (Status.1) BOOL

Lead < minimum value or Lead > maximum value.

Laglnv (Status.2) BOOL Lag < minimum value or Lag > maximum value.

TimingModelnv BOOL Invalid TimingMode value.

(Status.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.

(Status.29)

RTSTimeStamplnv BOOL
(Status.30)

Invalid RTSTimeStamp value.

DeltaTlnv (Status.31) BOOL

Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT) ~ 1-39

Description: The LDLG instruction supports one lead and lag in series. The instruction also
allows configurable gain and bias factors. The LDLG instruction is designed to
execute in a task where the scan rate remains constant.

The LDLG instruction uses this equation:

_[1+Leadxs
H(s) = [1+Lag><s}

with these parameters limits:

Parameter: Limitations:

Lead LowLimit = 0.0
HighLimit = maximum positive float

Lag LowLimit = DeltaT/2 (DeltaT is in seconds)
HighLimit = maximum positive float

Whenever the value computed for the output is invalid, NAN, or ZINF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. When the value computed for the output becomes valid, the instruction
initializes the internal parameters and sets Out = (In x Gain) + Bias.

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan No action taken. No action taken.
instruction first run The instruction sets Out = (In x Gain) + Bias.

The control algorithm is not executed.
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.
Enableln is set The instruction executes. Enableln is always set.

EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

Publication 1756-RM006C-EN-P - June 2003

1-40 Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)

Example: The LDLG instruction in this example adds a first-order lag to a simulated
process. Optionally, you could enter a Gazn on the LDLG instruction to
simulate a process gain and you could enter a Bias to simulate an ambient

condition.

Structured Text

DEDT 01.In :=

DEDT (DEDT_01,DEDT Olarray) ;

LDLG 01.In :=
LDLG (LDLG_01) ;

SimulatedLoop.PV :=
PIDE (SimulatedLoop) ;

Function Block

DEDT 01.0ut;

SimulatedLoop.CVEU;

LDLG_01.0ut;

DECDT_0O1 LDLE_01 SimulatedLoop
DEDT El LDLG D FIDE D
Deadtime Lead-Lag Enhanced PID

In Out o— In Out O—— PV CWEL

Storagefrray DEDT_O1aray O SFFrog SF O

] SPCazcade FWHHAlLamm [

O} RatioFrog FWHALam [

] CWFrog PYLAlarm [=

O FF FYLLAlarm [

O HandFB PYROCFosalarm [0

=] PragFragReq PWROCHegAlarm [

=] FrogOperReq LewHHAlam [0

] FrogCasRatReq DevHAlarm [=)

=] ProgAutoReq DewlAlarm [0

= FroghlanualReq DevlLAlarm [5

=] PragQveridaReq FrogQper [0

= FrogHandReq CasRat[5

Auto [0

hlanual =

Ohrerride [

Hand [

Publication 1756-RM006C-EN-P - June 2003

1-41

Enhanced PID (PIDE)

Operands:

PIDE (PIDE tag);

A A& @B & @ 0000000

FIDE_0A1
FIDE _l
Enhanced PID

P CWEL [
SFPProg SP O
SPCazcade FWHHAlarm [2
FatioFrog FWHAlLarm 5
CWProg PwLalarm &
FF FwLLAlarm [5
HandFB FWROCFozAlarm [5
FrogProgReq FWROCHegalarm [5
FrogOperReg DewHHAlarm @
FrogCasRatReq DevHAlarm [0
FrogAutoReq DevlAlarm [5
FroghianualReq CrevLLAlarm [5
FrogOwernideReq FrogOper [2
FrogHandReq CazRat[@
Auto [

Manual [0

Override [5

Hand [0

AutotuneTag

v

The PIDE instruction provides enhanced capabilities over the standard PID
instruction. The instruction uses the velocity form of the PID algorithm. The
gain terms are applied to the change in the value of error or PV, not the value
of error or PV.

Structured Text

Operand: Type: Format: Description:
PIDE tag PIDE_ENHANCED structure PIDE structure

Structured text does not support the autotune tag that is available in function
block.

Function Block

Operand: Type: Format: Description:
PIDE tag PIDE_ENHANCED structure PIDE structure
autotune tag PIDE_AUTOTUNE structure (optional)
autotune structure, see
page 1-53

Publication 1756-RM006C-EN-P - June 2003

1-42

PID_ENHANCED Structure

Input Parameter:

Data Type:

Description:

Enableln

BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

PV

REAL

Scaled process variable input. This value is typically read from an analog input module.
Valid = any float
Default = 0.0

PVFault

BOOL

PV bad health indicator. If PV is read from an analog input, then PVFault is normally
controlled by the analog input fault status. When PVFault is set, it indicates that the input
signal has an error.

Default is cleared = “good health”

PVEUMax

REAL

Maximum scaled value for PV. The value of PV and SP which corresponds to 100 percent span
of the Process Variable.

Valid = PVEUMin < PVEUMax < maximum positive float

Default = 100.0

PVEUMin

REAL

Minimum scaled value for PV. The value of PV and SP which corresponds to 0 percent span of
the Process Variable.

Valid = maximum negative float <PVEUMin < PVEUMax

Default = 0.0

SPProg

REAL

SP program value, scaled in PV units. SP is set to this value when in Program control and not
Cascade/Ratio mode. If the value of SPProg < SPLLimit or > SPHLimit, the instruction sets the
appropriate bit in Status and limits the value used for SP.

Valid = SPLLimit to SPHLimit

Default = 0.0

SPOper

REAL

SP operator value, scaled in PV units. SP is set to this value when in Operator control and not
Cascade/Ratio mode. If the value of SPOper < SPLLimit or > SPHLimit, the instruction sets the
appropriate bit in Status and limits the value used for SP.

Valid = SPLLimit to SPHLimit

Default = 0.0

SPCascade

REAL

SP Cascade value, scaled in PV units. If CascadeRatio is set and UseRatio is cleared, then
SP = SPCascade. This is typically the CVEU of a primary loop. If CascadeRatio and UseRatio
are set, then SP = (SPCascade x Ratio). If the value of SPCascade < SPLLimit or > SPHLimit,
set the appropriate bit in Status and limit the value used for SP.

Valid = SPLLimit to SPHLimit

Default = 0.0

SPHLimit

REAL

SP high limit value, scaled in PV units. If SPHLimit > PVEUMax, the instruction sets the
appropriate bit in Status.

Valid = SPLLimit to PVEUMax

Default = 100.0

SPLLimit

REAL

SP low limit value, scaled in PV units. If SPLLimit < PVEUMin, the instruction sets the
appropriate bit in Status. If SPHLimit < SPLLimit, the instruction sets the appropriate bit in
Status and limits SP using the value of SPLLimit.

Valid = PVEUMin to SPHLimit

Default = 0.0

UseRatio

BOOL

Allow ratio control permissive. Set to enable ratio control when in Cascade/Ratio mode.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-43

Input Parameter: Data Type: Description:

RatioProg REAL Ratio program multiplier. Ratio and RatioOper are set equal to this value when in Program
control. If RatioProg < RatioLLimit or > RatioHLimit, the instruction sets the appropriate bit in
Status and limits the value used for Ratio.
Valid = RatioLLimit to RatioHLimit
Default=1.0

RatioOper REAL Ratio operator multiplier. Ratio is set equal to this value when in Operator control. If
RatioOper < RatioLLimit or > RatioHLimit, the instruction sets the appropriate bit in Status
and limits the value used for Ratio.
Valid = RatioLLimit to RatioHLimit
Default = 1.0

RatioHLimit REAL Ratio high limit value. Limits the value of Ratio obtained from RatioProg or RatioOper. If
RatioHLimit < RatioLLimit, the instruction sets the appropriate bit in Status and limits Ratio
using the value of RatioLLimit.
Valid = RatioLLimit to maximum positive float
Default = 1.0

RatioLLimit REAL Ratio low limit value. Limits the value of Ratio obtained from RatioProg or RatioOper. If
RatioLLimit < 0, the instruction sets the appropriate bit in Status and limits the value to zero.
If RatioHLimit < RatioLLimit, the instruction sets the appropriate bit in Status and limits Ratio
using the value of RatioLLimit.
Valid = 0.0 to RatioHLimit
Default = 1.0

CVFault BOOL Control variable bad health indicator. If CVEU controls an analog output, then CVFault
normally comes from the analog output’s fault status. When set, CVFault indicates an error
on the output module and the instruction sets the appropriate bit in Status.
Default is cleared = “good health”

CVInitReq BOOL CV initialization request. This signal is normally controlled by the “In Hold” status on the
analog output module controlled by CVEU or from the InitPrimary output of a secondary
PID loop.
Default is cleared.

CVInitValue REAL CVEU initialization value, scaled in CVEU units. When CVinitializing is set,
CVEU = CVInitvalue and CV equals the corresponding percentage value. CVInitValue comes
from the feedback of the analog output controlled by CVEU or from the setpoint of a
secondary loop. Instruction initialization is disabled when CVFaulted or CVEUSpaninv is set.
Valid = any float
Default = 0.0

CVProg REAL CV program manual value. CV equals this value when in Program Manual mode. If CVProg < 0
or > 100, or < CVLLimit or > CVHLimit when CVManLimiting is set, the instruction sets the
appropriate bit in Status and limits the CV value.
Valid = 0.0 to 100.0
Default = 0.0

CVOper REAL CV operator manual value. CV equals this value when in Operator Manual mode. If not
Operator Manual mode, the instruction sets CVOper = CV at the end of each instruction
execution. If CVOper < 0 or > 100, or < CVLLimit or > CVHLimit when CVManLimiting is set,
the instruction sets the appropriate bit in Status and limits the CV value.
Valid = 0.0 to 100.0
Default =0.0

CVOverride REAL CV override value. CV equals this value when in override mode. This value should correspond

to a safe state output of the PID loop. If CVOverride < 0 or >100, the instruction sets the
appropriate bit in Status and limits the CV value.

Valid = 0.0 to 100.0

Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

1-44

Input Parameter:

Data Type:

Description:

CVPrevious

REAL

CV,,.1 value. If CVSetPrevious is set, CV,_; equals this value. CV,,.; is the value of CV from the
previous execution. CVPrevious is ignored when in manual, override or hand mode or when
CViInitializing is set. If CVPrevious < 0 or > 100, or < CVLLimit or > CVHLimit when in Auto or
cascade/ratio mode, the instruction sets the appropriate bit in Status and limits the CV,;
value.

Valid = 0.0 to 100.0

Default = 0.0

CVSetPrevious

BOOL

Request to use CVPrevious. If set, CV,,; = CVPrevious.
Default is cleared.

CVManLimiting

BOOL

Limit CV in manual mode request. If Manual mode and CVManLimiting is set, CV is limited by
the CVHLimit and CVLLimit values.
Default is cleared.

CVEUMax

REAL

Maximum value for CVEU. The value of CVEU which corresponds to 100 percent CV. If
CVEUMax = CVEUMIin, the instruction sets the appropriate bit in Status.

Valid = any float

Default = 100.0

CVEUMin

REAL

Minimum value of CVEU. The value of CVEU which corresponds to 0 percent CV. If
CVEUMax = CVEUMIin, the instruction sets the appropriate bit in Status.

Valid = any float

Default = 0.0

CVHLimit

REAL

CV high limit value. This is used to set the CVHAlarm output. It is also used for limiting CV
when in Auto or Cascade/Ratio mode, or Manual mode if CVManLimiting is set. If CVHLimit >
100 or < CVLLimit, the instruction sets the appropriate bit in Status. If CVHLimit < CVLLimit,
the instruction limits CV using the value of CVLLimit.

Valid = CVLLimit < CVHLimit < 100.0

Default = 100.0

CVLLimit

REAL

CV low limit value. This is used to set the CVLAlarm output. It is also used for limiting CV
when in Auto or Cascade/Ratio mode, or Manual mode if CVManLimiting is set. If
CVLLimit < 0 or CVHLimit < CVLLimit, the instruction sets the appropriate bit in Status. If
CVHLimit < CVLLimit, the instruction limits CV using the value of CVLLimit.

Valid = 0.0 < CVLLimit < CVHLimit

Default = 0.0

CVROCLimit

REAL

CV rate of change limit, in percent per second. Rate of change limiting is only used when in
Auto or Cascade/Ratio modes or Manual mode if CYManLimiting is set. Enter 0 to disable CV
ROC limiting. If CVROCLimit < 0, the instruction sets the appropriate bit in Status and
disables CV ROC limiting.

Valid = 0.0 to maximum positive float

Default = 0.0

FF

REAL

Feed forward value. The value of feed forward is summed with CV after the zero-crossing
deadband limiting has been applied to CV. Therefore changes in FF are always reflected in
the final output value of CV. If FF < =100 or > 100, the instruction sets the appropriate bit in
Status and limits the value used for FF.

Valid =-100.0 to 100.0

Default = 0.0

FFPrevious

REAL

FF,,.; value. If FFSetPrevious is set, the instruction sets FF,_; = FFPrevious. FF,,_; is the value
of FF from the previous execution. If FFPrevious < —100 or > 100, the instruction sets the
appropriate bit in Status and limits value used for FF,,.;.

Valid = -100.0 to 100.0

Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

1-45

Input Parameter: Data Type: Description:

FFSetPrevious BOOL Request to use FFPrevious. If set, FF,_; = FFPrevious.
Default is cleared.

HandFB REAL CV Hand feedback value. CV equals this value when in Hand mode and HandFBFault is
cleared (good health). This value typically comes from the output of a field mounted
hand/auto station and is used to generate a bumpless transfer out of hand mode. If
HandFB < 0 or > 100, the instruction sets the appropriate bit in Status and limits the value
used for CV.

Valid = 0.0 to 100.0
Default = 0.0

HandFBFault BOOL HandFB value bad health indicator. If the HandFB value is read from an analog input, then
HandFBFault is typically controlled by the status of the analog input channel. When set,
HandFBFault indicates an error on the input module and the instruction sets the appropriate
bit in Status.

Default is cleared = “good health”

WindupHIn BOOL Windup high request. When set, the CV is not allowed to increase in value. This signal is
typically obtained from the WindupHOut output from a secondary loop.
Default is cleared.

WindupLIn BOOL Windup low request. When set, the CV is not allowed to decrease in value. This signal is
typically obtained from the WindupLOut output from a secondary loop.
Default is cleared.

ControlAction BOOL Control action request. Set to calculate error as E = PV - SP; clear to calculate error as
E=SP-PV.

Default is cleared.

Dependindepend BOOL Dependent/independent control request. When set, use the dependent form of the PID
equation; when cleared, use the independent form of the equations.
Default is cleared.

PGain REAL Proportional gain. When the independent form of the PID algorithm is selected, enter the
unitless proportional gain into this value. When the dependent PID algorithm is selected,
enter the unitless controller gain into this value. Enter 0 to disable the proportional control. If
PGain < 0, the instruction sets the appropriate bit in Status and uses of value of PGain = 0.
Valid = 0.0 to maximum positive float
Default = 0.0

IGain REAL Integral gain. When the independent form of the PID algorithm is selected, enter the integral
gain in units of 1/minutes into this value. When the dependent PID algorithm is selected,
enter the integral time constant in units of minutes/repeat into this value. Enter 0 to disable
the integral control. If IGain < 0, the instruction sets the appropriate bit in Status and uses a
Value of 1Gain = 0.

Valid = 0.0 to maximum positive float
Default = 0.0

DGain REAL Derivative gain. When the independent form of the PID algorithm is selected, enter the
derivative gain in units of minutes into this value. When the dependent PID algorithm is
used, enter the derivative time constant in units of minutes into this value. Enter 0 to disable
the derivative control. If DGain < 0, the instruction sets the appropriate bit in Status and uses
a value of DGain = 0.

Valid = 0.0 to maximum positive float
Default = 0.0
PVEProportional BOOL Proportional PV control request. When set, calculate the proportional term (DeltaPTerm)

using the change in process variable (PVPercent). When cleared, use the change in
error (EPercent).
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-46

Input Parameter:

Data Type:

Description:

PVEDerivative

BOOL

Derivative PV control request. When set, calculate the derivative term (DeltaDTerm) using
the change in process variable (PVPercent). When cleared, use the change in error (EPercent).
Default is set.

DSmoothing

BOOL

Derivative Smoothing request. When set, changes in the derivative term are smoothed.
Derivative smoothing causes less output “jitters” as a result of a noisy PV signal but also
limits the effectiveness of high derivative gains.

Default is cleared.

PVTracking

BOOL

SP track PV request. Set to cause SP to track PV when in manual mode. Ignored when in
Cascade/Ratio or Auto mode.
Default is cleared.

ZCDeadband

REAL

Zero crossing deadband range, scaled in PV units. Defines the zero crossing deadband range.
Enter 0 to disable the zero crossing deadband checking. If ZCDeadband < 0, the instruction
sets the appropriate bit in Status and disables zero crossing deadband checking.

Valid = 0.0 to maximum positive float

Default = 0.0

ZCOff

BOOL

Zero crossing disable request. Set to disable zero crossing for the deadband calculation.
Default is cleared.

PVHHLimit

REAL

PV high-high alarm limit value, scaled in PV units.
Valid = any float
Default = maximum positive float

PVHLimit

REAL

PV high alarm limit value, scaled in PV units.
Valid = any float
Default = maximum positive float

PVLLimit

REAL

PV low alarm limit value, scaled in PV units.
Valid = any float
Default = maximum negative float

PVLLLimit

REAL

PV low-low alarm limit value, scaled in PV units.
Valid = any float
Default = maximum negative float

PVDeadband

REAL

PV alarm limit deadband value, scaled in PV units. Deadband is the delta value between the
turn-on and turn-off value for each of the PV alarm limits. If PVDeadband < 0.0, the
instruction sets the appropriate bit in Status and limits PVDeadband to zero.

Valid = 0.0 to maximum positive float

Default = 0.0

PVROCPosLimit

REAL

PV positive rate of change alarm limit. The limit value for a positive (increasing) change in PV,
scaled in PV units per seconds. Enter 0.0 to disable positive PVROC alarm checking. If
PVROCPosLimit < 0.0, the instruction sets the appropriate bit in Status and disables

PVROC checking.

Valid = 0.0 to maximum positive float

Default = 0.0 PV/second

PVROCNegLimit

REAL

PV negative rate of change alarm limit. The limit value for a negative (decreasing) change in
PV, scaled in PV units per seconds. Enter 0.0 to disable negative PVROC alarm checking. If
PVROCNegLimit < 0, the instruction sets the appropriate bit in Status and disables negative
PVROC checking.

Valid = 0.0 to maximum positive float

Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

1-47

Input Parameter:

Data Type:

Description:

PVROCPeriod

REAL

PV rate of change sample period. The time period, in seconds, over which the rate of change
for PV is evaluated. Enter 0 to disable PVROC alarm checking. If PVROCPeriod < 0.0, the
instruction sets the appropriate bit in Status, and disables positive and negative

PVROC checking.

Valid = any float > 0.0

Default = 0.0 seconds

DevHHLimit

REAL

Deviation high-high alarm limit value, scaled in PV units. Deviation is the difference in value
between the process variable (PV) and the setpoint (SP). Deviation alarming alerts the
operator to a discrepancy between the process variable and the setpoint value. If
DevHHLimit < 0.0, the instruction sets the appropriate bits in Status and sets

DevHHLimit = 0.0.

Valid = 0.0 to maximum positive float

Default = maximum positive float

DevHLimit

REAL

Deviation high alarm limit value, scaled in PV units. Deviation is the difference in value
between the process variable (PV) and the setpoint (SP). Deviation alarming alerts the
operator to a discrepancy between the process variable and the setpoint value. If
DevHLimit < 0.0, the instruction sets the appropriate bit in Status and sets DevHLimit = 0.0.
Valid = 0.0 to maximum positive float

Default = maximum positive float

DevLLimit

REAL

Deviation low alarm limit value, scaled in PV units. Deviation is the difference in value
between the process variable (PV) and the setpoint (SP). Deviation alarming alerts the
operator to a discrepancy between the process variable and the setpoint value. If
DevLLimit < 0.0, the instruction sets the appropriate bit in Status and sets DevLLimit = 0.0.
Valid = 0.0 to maximum positive float

Default = maximum positive float

DevLLLimit

REAL

Deviation low-low alarm limit value, scaled in PV units. Deviation is the difference in value
between the process variable (PV) and the setpoint (SP). Deviation alarming alerts the
operator to a discrepancy between the process variable and the setpoint value. If
DevLLLimit < 0.0, the instruction sets the appropriate bit in Status and sets DevLLLimit = 0.0.
Valid = 0.0 to maximum positive float

Default = maximum positive float

DevDeadband

REAL

The deadband value for the Deviation alarm limits, scaled in PV units. Deadband is the delta
value between the turn-on and turn-off value for each of the Deviation alarm limits. If
DevDeadband < 0.0, the instruction sets the appropriate bit in Status and sets
DevDeadband = 0.0.

Valid = 0.0 to maximum positive float

Default=0.0

AllowCasRat

BOOL

Allow cascade/ratio mode permissive. Set to allow Cascade/Ratio mode to be selected using
either ProgCascadeRatioReq or OperCascadeRatioReq.
Default is cleared.

ManualAfterinit

BOOL

Manual mode after initialization request. When set, the instruction is placed in Manual mode
when CVinitializing is set, unless the current mode is Override or Hand. When
ManualAfterlnit is cleared, the instruction’s mode is not changed, unless requested to do so.
Default is cleared.

ProgProgReq

BOOL

Program program request. Set by the user program to request Program control. Ignored if
ProgOperReq is set. Holding this set and ProgOperReq cleared locks the instruction in
Program control. When ProgValueReset is set, the instruction clears the input

each execution.

Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-48

Input Parameter: Data Type: Description:

ProgOperReq BOOL Program operator request. Set by the user program to request Operator control. Holding this
set locks the instruction in Operator control. When ProgValueReset is set, the instruction
clears the input each execution.

Default is cleared.

ProgCasRatReq BOOL Program cascade/ratio mode request. Set by the user program to request Cascade/Ratio
mode. When ProgValueReset is set, the instruction clears the input each execution.
Default is cleared.

ProgAutoReq BOOL Program auto mode request. Set by the user program to request Auto mode. When
ProgValueReset is set, the instruction clears the input each execution.

Default is cleared.

ProgManualReq BOOL Program manual mode request. Set by the user program to request Manual mode. When
ProgValueReset is set, the instruction clears the input each execution.

Default is cleared.

ProgOverrideReq BOOL Program override mode request. Set by the user program to request Override mode. When
ProgValueReset is set, the instruction clears the input each execution.

Default is cleared.

ProgHandReq BOOL Program hand mode request. Set by the user program to request Hand mode. This value is
usually read as a digital input from a hand/auto station. When ProgValueReset is set, the
instruction clears the input each execution.

Default is cleared.

OperProgReq BOOL Operator program request. Set by the operator interface to request Program control. The
instruction clears this input each execution.
Default is cleared.

OperOperReq BOOL Operator operator request. Set by the operator interface to request Operator control. The
instruction clears this input each execution.
Default is cleared.

OperCasRatReq BOOL Operator cascade/ratio mode request. Set by the operator interface to request
Cascade/Ratio mode. The instruction clears this input each execution.

Default is cleared.

OperAutoReq BOOL Operator auto mode request. Set by the operator interface to request Auto mode. The
instruction clears the input each execution.
Default is cleared.

OperManualReq BOOL Operator manual mode request. Set by the operator interface to request Manual mode. The
instruction clears the input each execution.
Default is cleared.

ProgValueReset BOOL Reset program control values. When set, all the program request inputs are cleared by the
instruction each execution. When set and in Operator control, the instruction sets
SPProgram = SP and CVProgram = CV.

Default is cleared.

TimingMode DINT Selects timing execution mode.

Value; Description;

0 periodic mode

1 oversample mode

2 real time sampling mode

For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default=0

Publication 1756-RM006C-EN-P - June 2003

1-49

Input Parameter: Data Type: Description:

OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0

RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default =1

RTSTimeStamp DINT Module time stamp value for real time sampling mode.

Valid = 0 to 32,767ms
Default=0

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

CVEU REAL Scaled control variable output. Scaled using CVEUMax and CVEUMin, where CVEUMax
corresponds to 100 percent and CVEUMIn corresponds to 0 percent. This output typically
controls an analog output module or a secondary loop. Arithmetic flags are set for
this output.

CVEU = (CV x CVEUSpan / 100) + CVEUMin
CVEU span calculation: CVEUSpan = (CVEUMax - CYEUMin)

cv REAL Control variable output. This value is expressed as 0 to 100 percent. CV is limited by
CVHLimit and CVLLimit when in auto or cascade/ratio mode or manual mode if
CVManLimiting is set. Otherwise this value is limited by 0 and 100 percent. Arithmetic flags
are set for this output.

CVinitializing BOOL Initialization mode indicator. CVInitializing is set when CVInitReq is set, during instruction
first scan, and on a set to cleared transition of CVHealth (bad to good). CVinitializing is
cleared after the instruction has been initialized and CVInitReq is cleared.

CVHAlarm BOOL CV high alarm indicator. Set when the calculated value of CV > 100 or CVHLimit.

CVLAlarm BOOL CV low alarm indicator. Set when the calculated value of CV < 0 or CVLLimit.

CVROCAlarm BOOL CV rate of change alarm indicator. Set when the calculated rate of change for CV exceeds
CVROCLimit.

SP REAL Current setpoint value. The value of SP is used to control CV when in Auto or
Cascade/Ratio mode.

SPPercent REAL The value of SP expressed in percent of span of PV.

SPPercent = ((SP - PYEUMin) x 100) / PVSpan

PV Span calculation: PVSpan = (PVEUMax - PVEUMin)
SPHAlarm BOOL SP high alarm indicator.

Set when the SP > SPHLimit.
SPLAlarm BOOL SP low alarm indicator.

Set when the SP < SPLLimit.
PVPercent REAL PV expressed in percent of span.

PVPercent = ((PV- PVEUMIn) x 100) / PVSpan

PV Span calculation: PVSpan = (PVEUMax - PVEUMin)

E REAL Process error. Difference between SP and PV, scaled in PV units.

EPercent REAL The error expressed as a percent of span.

InitPrimary BOOL Initialize primary loop command. Set when not in Cascade/Ratio mode or when CVInitializing

is set. This signal is normally used by the CVInitReq input of a primary PID loop.

Publication 1756-RM006C-EN-P - June 2003

Output Parameter: Data Type: Description:

WindupHOut BOOL Windup high indicator. Set when either a SP high, CV high, or CV low limit (depending on the
control action) has been reached. This signal is typically used by the WindupHIn input to
prevent the windup of the CV output on a primary loop.

WindupLOut BOOL Windup low indicator. Set when either a SP, CV high, or CV low limit (depending on the
control action) has been reached. This signal is typically used by the WindupLIn input to
prevent the windup of the CV output on a primary loop.

Ratio REAL Current ratio multiplier.

RatioHAlarm BOOL Ratio high alarm indicator. Set when Ratio > RatioHLimit.

RatioLAlarm BOOL Ratio low alarm indicator. Set when Ratio < RatioLLimit.

ZCDeadbandOn BOOL Zero crossing deadband indicator. When set the value of CV does not change. If ZCOff is set,

then ZCDeadbandOn is set when | E | is within the ZCDeadband range. If ZCOff is cleared,
then ZCDeadbandOn is set when | E | crosses zero and remains within the ZCDeadband
range. ZCDeadbandOn is cleared when | E | exceeds the deadband range or when
ZCDeadband = 0.

PVHHAlarm BOOL PV high-high alarm indicator. Set when PV > PVHHLimit. Cleared when
PV < (PVHHLimit - PVDeadband)

PVHAIlarm BOOL PV high alarm indicator. Set when PV > PVHLimit. Cleared when
PV < (PVHLimit - PVDeadband)

PVLAlarm BOOL PV low alarm indicator. Set when PV < PVLLimit. Cleared when
PV > (PVLLimit + PVDeadband)

PVLLAlarm BOOL PV low-low alarm indicator. Set when PV < PVLLLimit. Cleared when
PV > (PVLLLimit + PVDeadband)

PVROCPosAlarm BOOL PV positive rate-of-change alarm indicator. Set when calculated
PV rate-of-change > PVROCPosLimit.

PVROCNegAlarm BOOL PV negative rate-of-change alarm indicator. Set when calculated
PV rate-of-change < (PVROCNegLimit x -1).

DevHHAlarm BOOL Deviation high-high alarm indicator. Set when PV > (SP + DevHHLimit). Cleared when
PV < (SP + DevHHLimit - DevDeadband)

DevHAlarm BOOL Deviation high alarm indicator. Set when PV > (SP + DevHLimit). Cleared when
PV < (SP + DevHLimit - DevDeadband)

DevLAlarm BOOL Deviation low alarm indicator. Set when PV < (SP - DevLLimit). Cleared when
PV > (SP - DevLLimit + DevDeadband)

DevLLAlarm BOOL Deviation low-low alarm indicator. Set when PV < (SP - DevLLLimit). Cleared when
PV > (SP - DevLLLimit + DevDeadband)

ProgOper BOOL Program/operator control indicator. Set when in Program control. Cleared when in
Operator control.

CasRat BOOL Cascade/ratio mode indicator. Set when in the Cascade/Ratio mode.

Auto BOOL Auto mode indicator. Set when in the Auto mode.

Manual BOOL Manual mode indicator. Set when in the Manual mode.

Override BOOL Override mode indicator. Set when in the Override mode.

Hand BOOL Hand mode indicator. Set when in the Hand mode.

DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Statusl DINT Status of the function block.

Publication 1756-RM006C-EN-P - June 2003

1-51

Output Parameter: Data Type: Description:

InstructFault BOOL The instruction detected one of the following execution errors. This is not a minor or major

(Status1.0) controller error. Check the remaining status bits to determine what occurred.

PVFaulted (Status1.1) BOOL Process variable (PV) health bad.

CVFaulted (Status1.2) BOOL Control variable (CV) health bad.

HandFBFaulted BOOL HandFB value health bad.

(Status1.3)

PVSpaninv (Status1.4) BOOL Invalid span of PV. PVEUMax < PVEUMIn.

SPProginv (Status1.5) BOOL SPProg < SPLLimit or SPProg > SPHLimit. The instruction uses the limited value for SP.

SPOperinv (Status1.6) BOOL SPOper < SPLLimit or SPOper > SPHLimit. The instruction uses the limited value for SP.

SPCascadelnv BOOL SPCascade < SPLLimit or SPCascade > SPHLimit. The instruction uses the limited value

(Status1.7) for SP.

SPLimitsInv BOOL Limits invalid: SPLLimit < PVEUMin, SPHLimit > PVEUMax, or SPHLimit < SPLLimit. If

(Status1.8) SPHLimit < SPLLimit, the instruction limits the value using SPLLimit

RatioProginv BOOL RatioProg < RatioLLimit or RatioProg > RatioHLimit. The instruction limits the value for Ratio.

(Status1.9)

RatioOperinv BOOL RatioOper < RatioLLimit or RatioOper > RatioHLimit. The instruction limits the value for Ratio.

(Status1.10)

RatioLimitsinv BOOL Low limit < 0 or High limit < low limit.

(Status1.11)

CVProglnv (Status1.12) BOOL CVProg < 0 or CVProg > 100, or CVProg < CVLLimit or CVProg > CVHLimit when
CVManLimiting is set. The instruction limits the value for CV.

CVOperinv BOOL CVOper < 0 or CVOper > 100, or CVOper < CVLLimit or CVOper > CVHLimit when

(Status1.13) CVManLimiting is set. The instruction limits the value for CV.

CVOverridelnv BOOL CVOverride < 0 or CVOverride > 100. The instruction limits the value for CV.

(Status1.14)

CVPreviouslnv BOOL CVPrevious < 0 or CVPrevious > 100, or < CVLLimit or > CVHLimit when in auto or

(Status1.15) cascade/ratio mode. The instruction uses the limited value for CV,_;.

CVEUSpaninv BOOL Invalid CVEU span. The instruction uses a value of CVEUMax = CVEUMIin.

(Status1.16)

CVLimitsinv BOOL CVLLimit <0, CVHLimit > 100, or CVHLimit < CVLLimit. If CVHLimit < CVLLimit, the instruction

(Status1.17) limits CV using CVLLimit.

CVROCLimitlnv BOOL CVROCLimit < 0. The instruction disables ROC limiting.

(Status1.18)

FFInv (Status1.19) BOOL FF <—100 or FF > 100. The instruction uses the limited value for FF.

FFPreviousinv BOOL FFPrevious < —100 or FFPrevious > 100. The instruction uses the limited value for FF,_;.

(Status1.20)

HandFBInv BOOL HandFB < 0 or HandFB > 100. The instruction uses the limited value for CV.

(Status1.21)

PGaininv (Status1.22) BOOL PGain < 0. The instruction uses a value of PGain = 0.

IGaininv (Status1.23) BOOL IGain < 0. The instruction uses a value of 1Gain = 0.

DGainlnv (Status1.24) BOOL DGain < 0. The instruction uses a value of DGain = 0.

ZCDeadbandInv BOOL ZCDeadband < 0. The instruction disables zero crossing deadband.

(Status1.25)

Publication 1756-RM006C-EN-P - June 2003

Output Parameter: Data Type: Description:

PVDeadbandInv BOOL PVDeadband < 0.

(Status1.26)

PVROCLimitsInv BOOL PVROCPosLimit < 0, PVROCNegLimit < 0, or PVROCPeriod < 0.

(Status1.27)

DevHLLimitsInv BOOL Deviation high-low limits invalid. Low-low limit < 0, low limit < 0, high limit < 0, or
(Status1.28) high-high limit < 0. The instruction uses 0 for the invalid limit.

DevDeadbandinv BOOL Deviation deadband < 0. The instruction uses a value of DevDeadband = 0.
(Status1.29)

Status2 DINT Timing status of the function block.

TimingModelnv BOOL Invalid TimingMode value.

(Status2.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
(Status2.28)

RTSTimelnv BOOL Invalid RTSTime value.

(Status2.29)

RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.

(Status2.30)

DeltaTInv (Status2.31) BOOL Invalid DeltaT value.

Description: The PID algorithm regulates the CV output in order to maintain the PV at the
SP when the instruction executes in Cascade/Ratio or Auto modes.

When ControlAction is set, the calculated value of EPercent and
PVPIDPercent is negated before being used by the control algorithm.

The following table describes how the instruction calculates the PID terms:

PID term: How calculated:

proportional The proportional term is calculated using:
o PV when PVEProportional is set or

o Error when PVEProportional is cleared

Set PGain = 0 to disable proportional control.

integral The integral term is calculated using Error. Set IGain = 0 to disable integral control. Also,
setting PGain = 0 when Dependindepend is set will disable integral control.

derivative The derivative term is calculated using:
o PV when PVEDerivative is set or
o Error when PVEDerivative is cleared
Set DGain = 0 to disable derivative control. Also, setting PGain = 0 when Dependindepend
is set will disable derivative control.

Derivative smoothing is enabled when DSmoothing is set and disabled when DSmoothing
is cleared. Derivative smoothing causes less CV output “jitter” as a result of a noisy PV
signal but also limits the effectiveness of high derivative gains.

Publication 1756-RM006C-EN-P - June 2003

1-53

Computing CV

The PID control algorithm computes the value for CV by summing Delta
PTerm, Delta ITerm, Delta DTerm, and CV from the previous execution of
the instruction (i.e. CV_1). When CVSetPrevious is set, CVPrevious = CV_ 1.
This lets you preset CV,,_1 to a specified value before computing the value of
CV.

CalculatedCV = CV,_, + APTerm + AlTerm + ADTerm

Monitoring the PIDE instruction

There is an operator faceplate available for the PIDE instruction. For more
information, see appendix Function Block Faceplate Controls.

Autotuning the PIDE instruction

The RSLogix 5000 PIDE autotuner provides an open-loop autotuner built
into the PIDE instruction. You can autotune from PanelView terminals or any
other operator interface devices, as well as RSLogix 5000 software. The PIDE
block has an Autotune Tag (type PIDE_AUTOTUNE) that you specify for
those PIDE blocks that you want to autotune.

The PIDE autotuner is installed with RSLogix 5000 software, but you need an
activation key to enable the autotuner. The autotuner is only supported in
function block programming; it is not available in relay ladder or structured
text programming,

Publication 1756-RM006C-EN-P - June 2003

Arithmetic Status Flags:

Fault Conditions:

Publication 1756-RM006C-EN-P - June 2003

Use the Autotune tab to specify and configure the autotune tag for a PIDE
block.

PIDE Properties - PIDE_01 [x]
Parameters| Tag | Autotune |
Tag
Name: pidauto
Acquire Tag Tag Status: Awailable
Felease Tag
Autotune Inputs Current Gaing
PuosessTypsr [Pecue] Propartora 18745131

Integrak 44988312

PV Change Limit 500 Derivative 0.01243576
[V Step Size 100 %

Autatine,. Ereuticn States

Status: 0K

Execution Order Mumber: 1

ak I Cancel Epply Help

For more information about using the autotuner, see RSLogix 5000 online
help or the Getting Results with the PIDE Autotuner, publication PIDE-GRO01.

Arithmetic status flags are set for the CV output.

none

1-55

Execution:
Condition: Function Block Action: Structured Text Action;
prescan InstructionFirstScan is set InstructionFirstScan is set

instruction first scan

If CVFault and CVEUSpaninv are set, see Processing Faults 1-74.

If CVFault and CVEUSpaninv are cleared

1.

CVinitializing is set.

2. If PVFault is set, PVSpaninv and SPLimitsInv are cleared. See Processing Faults on page -74.
3.
4. The instruction sets CVEU = CVInitValue and CV = corresponding percentage.

The PID control algorithm is not executed.

CVInitValue is not limited by CYEUMax or CVEUMin. When the instruction calculates CV as the
corresponding percentage, it is limited to 0-100.

CVEU = CVInitValue

CVEU - CVEUMin
cvV._. =CV= 100
n-1 CVEUMax - CVEUMin

CVOper = CV

. When CVlnitializing and ManualAfterInit are set, the instruction disables auto and cascade/ratio

modes. If the current mode is not Override or Hand mode, the instruction changes to Manual mode. If
ManualAfterlnit is cleared the mode is not changed.

6. All the operator request inputs are cleared.

7.

8. All the PV high-low, PV rate-of-change, and deviation high-low alarm outputs are cleared.
9.

If ProgValueReset set, all the program request inputs are cleared

If CVInitReq is cleared, CVinitializing is cleared.

instruction first run

ProgOper is cleared. ProgOper is cleared.
The instruction changes to manual mode. The instruction changes to manual mode.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.

Enableln is set The instruction executes. Enableln is always set.
EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

When CVInitReq is set, or during instruction first scan, or on a set to cleared
transition of CVFault (bad to good), the instruction initializes the CVEU and
CV outputs to the value of CVInitValue. If the timing mode is not oversample
and Enableln transitions from cleared to set, the instruction initializes the
CVEU and CV values. CVlInitialization is cleared after the initialization and
when CVInitReq is cleared.

The CVlInitValue normally comes from the analog output’s readback value.
The CVInitReq value normally comes from the “In Hold” status bit on the
analog output controlled by CVEU. The initialization procedure is performed
to avoid a bump at startup in the output signal being sent to the field device.

The instruction does not initialize and the CVEU and CV values are not
updated if CVFault or CVEUSpanlnv is set.

Publication 1756-RM006C-EN-P - June 2003

1-56

When using cascaded PID loops, the primary PID loop can be initialized when
the secondary loop is initialized or when the secondary loop leaves the
Cascade/Ratio mode. In this case, move the state of the InitPrimary output
and SP output from the secondary loop to the CVInitReq input and
CVInitValue input on the primary loop.

Example 1: The easiest way to implement a PIDE instruction is to create an function
block routine in a program in a periodic task. The default timing mode for the
PIDE instruction is periodic. When the PIDE instruction is used in a periodic
task and in periodic timing mode, it automatically uses the periodic task’s
update rate as its delta t update time. All you need to do is wire the process
variable analog input into the PV parameter on the PIDE instruction and wire
the CVEU out of the PIDE instruction into the controlled variable analog
output.

Optionally, you can wire the analog input’s fault indicator (if one is available)
into the PVFault parameter on the PIDE instruction. This forces the PIDE
into Manual mode when the analog input is faulted and stops the PIDE
CVEU output from winding up or down when the PV signal is not available.
Structured Text
PIDE 01.PV := Local:1:I.ChOData;
PIDE 0l1.PVFault := Local:1:I.ChOFault;
PIDE (PIDEiol) ;
Local:2:0.ChOData := PIDE 01.CVEU;
Function Block
PIDE_OA
FIDE _I
Enhanced PID
oo oo
[— — PuFault sp "
a] SFFrog FPWHHAlam EIE
] spcasoas Fyiatam o
] RatioFrag PVLAlarm [0
] CWFrog FwLLAlarm 30
] FF FWROCFosAlarm 30
] HandFB PYROCHNegAlarm ZIE
=] FrogFrogReq CrewHHAlammM IID
] ProgOperReq DevHAlam =
=] FrogCasRatReq DrevlAlarm 30
7| FrogautoReq DevllAlam 32
=] ProghlanualReq ProgOper ZID
=] FrogOwerideReq CasRat IID
] FregHandReq Aute [0
Manual 30
1]
Owerride [0
1]
Hand [0
AutetuneTag T

Publication 1756-RM006C-EN-P - June 2003

Example 2:

Cascade control is useful when externally-caused upsets to the controlled
variable occur often, which then cause upsets to the process variable you are
trying to control. For example, try to control the temperature of liquid in a
tank by varying the amount of steam fed into a heating jacket around the tank.
If the steam flow suddenly drops because of an upstream process, the
temperature of the liquid in the tank eventually drops and the PIDE
instruction then opens the steam valve to compensate for the drop in
temperature.

In this example, a cascaded loop provides better control by opening the steam
valve when the steam flow drops before the liquid temperature in the tank
drops. To implement a cascaded loop, use a PIDE instruction to control the
steam valve opening based on a process variable signal from a steam flow
transmitter. This is the secondaty loop of the cascaded pair. A second PIDE
instruction (called the primary loop) uses the liquid temperature as a process
variable and sends its CV output into the setpoint of the secondary loop. In
this manner, the primary temperature loop asks for a certain amount of steam
flow from the secondary steam flow loop. The steam flow loop is then
responsible for providing the amount of steam requested by the temperature
loop in order to maintain a constant liquid temperature.

Structured Text

PrimaryLoop.PV := Local:1:I.CHOData;
PrimaryLoop.CVInitReq := SecondaryLoop.InitPrimary;
PrimaryLoop.CVInitValue := SecondaryLoop.SP;

PrimaryLoop.WindupHIn SecondaryLoop.WindupHOut;

PrimaryLoop.WindupLIn := SecondaryLoop.WindupLOut;

PIDE (PrimaryLoop) ;

SecondaryLoop.PV := Local:1:I.ChlData;

SecondaryLoop.SPCascade := PrimaryLoop.CVEU;

PIDE (SecondaryLoop) ;

Local:2:0.ChOData:= SecondaryLoop.CVEU;

Publication 1756-RM006C-EN-P - June 2003

Function Block

oo
Local:1:1.ChiData [,

|' ————————————————— -
| Primary Loop Secondary Loop |
PIDE _I FIDE _I
| Enhanced PID Enhanced PIO |
[ETTEma st i o j w el
0o oo
| o PProg 5P jD o PProg 5P jn—l—
] SPCascade PwHHAam [0 ZPCascade Init Primary [—
|] RatioProg PwHAam IIE] RatioProg Mfindup HOut DE—
L] ChnitReg PyLarm [] C4FProg WindupLOut [H— |
L—] Chnit'alue PuwLldam 32 O FF PWwHHAam 32 l |
] CwProg PwROCPozAam [0 | HandF B PwHAam o |
O FF PYROCHegMam ZIE] Prog Prog Req P Aam ZIE | |
] HandFB DevHHAam IlD 1] Prog OperFeq P Lam IID | |
—] WindupHIn DevwHAam [0 [ProgCasRatReq PWROCPosAam [0 |
| o UindupLin Dz Ldarm BE (] Prog At Req PuROCHagAam BE |
| | 1] PregProgReq Dew LLAam 30 17| Proghanual Reg DevHHAam 30 | |
] ProgQperReq Prag Oper ZID] Prog (hvermide Rag Dew HAam IID |
	1] ProgCazFatReq CasRat IID =] ProgHandReq Dew LAam IlD	
] ProgfrtoReq FAuto IID Dew LLAarm IID	
] Proghianual Fiag hianual 30 ProgQper 30	
i Prog0wemideReq Dwarmide [0 CazRat o		
] ProgHandReq Hand ZID Auto IlD	
	AutotuneTag 7 hinual IIE	
Dwermide IID		
Harnd &		
	AutotuneTag T	
lo - - —-_—_—_—_—————_ 4l
___________________ J}

Publication 1756-RM006C-EN-P - June 2003

For a cascaded pair of loops to work correctly, the secondary loop must have a
faster process response than the primary loop. This is because the secondary
loop’s process must be able to compensate for any upsets before these upsets
affect the primary loop’s process. In this example, if steam flow drops, the
steam flow must be able to increase as a result of the secondary controller’s
action before the liquid temperature is affected.

To set up a pair of cascaded PIDE instructions, set the A/owCasRat input
parameter in the secondary loop. This allows the secondary loop to be placed
into Cascade/Ratio mode. Next, wite the CIVEU from the primary loop into
the SPCascade parameter on the secondary loop. The SPCascade value is used as
the SP on the secondary loop when the secondary loop is placed into
Cascade/Ratio mode. The engineering unit range of the CVEU on the primary
loop should match the engineering unit range of the PV on the secondary
loop. This lets the primary loop scale its 0-100% value of CV into the
matching engineering units used for the setpoint on the secondary loop.

1-59

Example 3:

The PIDE instruction supports several other features to more effectively
support cascade control. Wire the InitPrimary output on the secondary loop
into the ClInifReq input on the primary loop and wire the SP output of the
secondary into the Cl/Initl alue input on the primary. This sets the CVEU
value of the primary loop equal to the SP of the secondary loop when the
secondary loop leaves Cascade/Ratio mode. This allows a bumpless transfer
when you place the secondary loop back into Cascade/Ratio mode. Also, wire
the WindupHOut and Windupl Out outputs on the secondary loop into the
WindupHIn and WindupLIn inputs on the primary loop. This causes the
primary loop to stop increasing or decreasing, as appropriate, its value of
CVEU if the secondary loop hits a SP limit or CV limit and eliminates any
windup on the primary loop if these conditions occur.

Ratio control is typically used to add a fluid in a set proportion to another
fluid. For example, if you want to add two reactants (say A and B) to a tank in
a constant ratio, and the flow rate of reactant A may change over time because
of some upstream process upsets, you can use a ratio controller to
automatically adjust the rate of reactant B addition. In this example, reactant A
is often called the “uncontrolled” flow since it is not controlled by the PIDE
instruction. Reactant B is then called the “controlled” flow.

To perform ratio control with a PIDE instruction, set the A/owCasRat and
UseRatio input parameters. Wire the uncontrolled flow into the SPCascade input
parameter. When in Cascade/Ratio mode, the uncontrolled flow is multiplied
by either the RazioOper (when in Operator control) or the RazioProg (when in
Program control) and the resulting value is used by the PIDE instruction as
the setpoint.

Structured Text

PIDE 01.PV := ControlledFlow;

PIDE Ol.SPCascade := UncontrolledFlow;

PIDE (PIDE 01);

Local:2:0.ChOData

PIDE 01.CVEU;

Publication 1756-RM006C-EN-P - June 2003

ControlledFlowm W,
Uneontrolle dFlaw [,

7

Function Block

FIDE_O1
FIDE |
Enhanced PID
0.0 oo
P CWEL] Local2:0.ChOD ata
oo
] SPPrag SP O
on u]
SFCascade PWHHAIam 30
O] RatioFrog FWHAlarm [0
u]
T CWFrog FuwLalarm [
o
O FF FwLLAlarm [
u]
] HandFB PWROCFasAlamm ZID
& FrogFrogReq FWROCHegAlarm 30
& ProglperReg DevHHAlarm 0
u]
= ProgCasRatReq LevHAlarm [
o
5 ProgautaReq Lrevldlarm 5
u]
] ProghlanualReq Cevllalarm ZID
& FrogOwerideReq FrogQper 30
| ProgHandReq CazRat[5
u]
Auto [
o
Manual [0
u]
Qveride [0
u]
Hand @
AutotuneTag T

Switching between Program control and Operator control

The PIDE instruction can be controlled by either a user program or an
operator interface. You can change the control mode at any time. Program and
Operator control use the same ProgOper output. When ProgOper is set,
control is Program; when ProgOper is cleared, control is Operator.

The following diagram shows how the PIDE instruction changes between
Program control and Operator control.

OperOperReq is set and ProgProgReq is cleared \

ProgOperReq is set ¥

y

Program Control

N

Publication 1756-RM006C-EN-P - June 2003

y

Operator Control

ProgProgReq is set and ProgOperReq is cleared

-

-

OperProgReq is set and ProgOperReq and OperOperReq are cleared

.

(1) The instruction remains in Operator control mode when ProgOperReq is set.

1-61

Operating modes

The PIDE instruction supports these PID modes:

PID Operating Mode:

Description:

Cascade/Ratio

While in Cascade/Ratio mode the instruction computes the change in CV. The
instruction regulates CV to maintain PV at either the SPCascade value or the SPCascade
value multiplied by the Ratio value. SPCascade comes from either the CVEU of a primary
PID loop for cascade control or from the “uncontrolled” flow of a ratio-controlled loop.

Select Cascade/Ratio mode using either OperCasRatReq or ProgCasRatReq:
Set OperCasRatReq to request Cascade/Ratio mode. Ignored when ProgOper,
ProgOverrideReq, ProgHandReq, OperAutoReq, or OperManualReq is set, or
when AllowCasRat is cleared.

Set ProgCasRatReq to request Cascade/Ratio mode. Ignored when ProgOper or
AllowCasRat is cleared or when ProgOverrideReq, ProgHandReq, ProgAutoReq,
or ProgManualReq is set.

Auto

While in Auto mode the instruction computes the change in CV. The instruction
regulates CV to maintain PV at the SP value. If in program control, SP = SPProg; if in
Operator control, SP = SPOper.

Select Auto mode using either OperAutoReq or ProgAutoReq:
Set OperAutoReq to request Auto mode. Ignored when ProgOper,
ProgOverrideReq, ProgHandReq, or OperManualReq is set.

Set ProgAutoReq to request Auto mode. Ignored when ProgOper is cleared or
when ProgOverrideReq, ProgHandReq, or ProgManualReq is set.

Manual

While in Manual mode the instruction does not compute the change in CV. The value of
CV is determined by the control. If in Program control, CV = CVProg; if in Operator
control, CV = CVOper.

Select Manual mode using either OperManualReq or ProgManualReq:
Set OperManualReq to request Manual mode. Ignored when ProgOper,
ProgOverrideReq, or ProgHandReq is set.

Set ProgManualReq to request Manual mode. Ignored when ProgOper is cleared
or when ProgOverrideReq or ProgHandReq is set.

Override

While in Override mode the instruction does not compute the change in CV.
CV = CVOverride, regardless of the control mode. Override mode is typically used to set
a “safe state” for the PID loop.

Select Override mode using ProgOverrideReq:
Set ProgOverrideReq to request Override mode. Ignored when ProgHandReq
is cleared.

Hand

While in Hand mode the PID algorithm does not compute the change in CV.
CV = HandFB, regardless of the control mode. Hand mode is typically used to indicate
that control of the final control element was taken over by a field hand/auto station.

Select Hand mode using ProgHandReq:
Set ProgHandReq to request hand mode. This value is usually read as a digital
input from a hand/auto station.

Publication 1756-RM006C-EN-P - June 2003

The Cascade/Ratio, Auto, and Manual modes can be controlled by a user
program when in Program control or by an operator interface when in
Operator control. The Override and Hand modes have a mode request input
that can only be controlled by a user program; these inputs operate in both
Program and Operator control.

Selecting the setpoint

Once the instruction determines program or operator control and the PID
mode, the instruction can obtain the proper SP value. You can select the
cascade/ratio SP or the current SP.

Cascade/ratio SP

The cascade/ratio SP is based on the UseRatio and ProgOper values.

If Ratio > RatioHLimit, RatioHAlarm
P |RatioHAlarmisset [---------- »
UseRatio l - — .
............................... -ep» | If Ratio < RatioLLimit, RatioL Alarm
RatioLAlarmisset ~ f---------- »
If Ratio > RatioHLimit, Ratio
Ratio = RatioHAlarm >
RatioProg If Ratio < RatioLLimit, 4
P | Select set Output Ratio = RatioLAlarm
RatioOper
p | Select cleared
ProgOper
Select < Input Output _
---------- o > > P P RatioOper
L p |Enable
(1 Output ——m|Select set Output ——————
11x12 CascadeRatio SP
—p» [Select cleared
12
SPCascade
' S Select
UseRatio |

..

Publication 1756-RM006C-EN-P - June 2003

1-63

Current SP

The current SP is based on the Cascade/Ratio mode, the PVTracking value,
auto mode, and the ProgOper value.

CascadeRatio SP

CasRat mode
---------------------------- | Select

p| Select set Output

Select cleared

PV Selected Non-Cascade/Ration SP

SPProg

SPOper .

p_» Select cleared
ProgOper :
. _g_ p ______ » Select

—— | Select set Outputj L»Select set Output

Select cleared

SP high/low limiting

Selected SP

The high-to-low alarming algorithm compares SP to the SPHLimit and
SPLLimit alarm limits. SPHLimit cannot be greater than PVEUMax and

SPLLimit cannot be less than PVEUMin.

SPHAlarm is set

SPLAlarm is set

SP

SP > SPHLimit
SPHAlarm is cleared® SP < SPHLimit
-
SP < SPLLimit
SPLAlarm is cleared® SP > SPLLimit
-
selected SP ° p | if SPHALARM is set
SPHAlarm ~~ - % - - | SP=SPHLimit
— | ifSPLAlarm is set
SPLAlarm - - - - - - - - - - - - - - | SP=SPLLimit

1 -

(1) During instruction first scan, the instruction clears the SP alarm outputs. The instruction also clears the SP
alarm limits and disables the alarming algorithm when PVSpaninv is set.

Publication 1756-RM006C-EN-P - June 2003

Updating the SPOper and SPProg values

The PIDE instruction makes SPOper = SP or SPProg = SP to obtain
bumpless control switching between Program and Operator control or when
switching from Cascade/Ratio mode.

SP from SP high/low limiting SPOper
= | Input Output ——p»
ProgOper or Cascade/Ratio mode or (PVTracking and not auto mode)
...................... . - p- | Enable
SPProg
. P
((not ProgOper) or Cascade/Ratio mode = | Input Output
or (PVTracking and not Auto mode)) and
ProgvalueReset > | Enable

PV high/low alarming

The high-high to low-low alarming algorithm compares PV to the PV alarm
limits and the PV alarm limits plus or minus the PV alarm deadband.

PV > PVHHLimit

> .
PVHHAlarm is cleared® PV < PVHHLimit - PVDeadband [PVHHAlarm is set

-
PV > PVHLimit
— > i
PVHAlarm is cleared® PV < PVHLimit - PVDeadband PVHAlarm is set
-
PV < PVLLimit
— > LA
PVLAlarm is cleared?) PV > PVLLimit + PVDeadband PVLAlarm is set
PV < PVLLLimit
i - PVLLAI i
PVLLAlarm is cleared® PV > PVLLLimit + PVDeadband arm s set
-

(1) During instruction first scan, the instruction clears all the PV alarm outputs. The instruction also clears the PV
alarm outputs and disables the alarming algorithm when PVFaulted is set.

Publication 1756-RM006C-EN-P - June 2003

1-65

PV rate-of-change alarming

PV rate-of-change (ROC) alarming compares the change in the value of PV
over the PVROCPeriod against the PV positive and negative rate-of-change
limits. The PVROCPeriod provides a type of deadband for the rate-of-change
alarm. For example, if you use a ROC alarm limit of 2°F/second with a petiod
of execution of 100 ms, and an analog input module with a resolution of 1°F,
then every time the input value changes, a ROC alarm is generated because the
instruction sees a rate of 10°F/second. However, by entering a PVROCPeriod
of at least 1 sec, the ROC alarm is only generated if the rate truly exceeds the
2°F /second limit.

The ROC calculation is only performed when the PVROCPeriod has expired.
The rate-of-change is calculated as:

ElapsedROCPeriod = ElapsedROCPeriod + ElapsedTimeSincelLastExecution

If ElapsedROCPeriod = PVROCPeriod then:

This value: Is:
PVROC
PV,-PVROC, _,
PVROCPeriod
PVROC,

PVROC, | = PV,

n

ElapsedROCPeriod
ElapsedROCperiod = 0

Once PVROC has been calculated, the PV ROC alarms are determined
as follows:

PVROC > PVROCPosLimit

PVROCPosAlarm
is cleared®

PVROCPosAlarm

PVROC < PVROCPosLimit is set

-

PVROC < —PVROCNegLimit

PVROCNegAlarm
is cleared®

PVROCNegAlarm
is set

PVROC > —PVROCNegLimit
|

(1) During instruction first scan, the instruction clears the PV ROC alarm outputs. The instruction also clears the
PVROC alarm outputs and disables the PV ROC alarming algorithm when PVFaulted is set.

Publication 1756-RM006C-EN-P - June 2003

Converting the PV and SP values to percent

The instruction converts PV and SP to a percent and calculates the error
before performing the PID control algorithm. The error is the difference
between the PV and SP values. When ControlAction is set, the values of
EPercent, E, and PVPIDPercent are negated before being used by the

PID algorithm.

PV

PV -

PVEUMin

PVE

UMax — PVEUMin

SP

SP -

PVEUMin

> PVEUMax — PVEUMin

_>

11 Output

11-12

12 PV —SP

ControlAction

.1_>
1 —p

PVPercent
EPercent
x100 (Il Output | g 11 Output | — g
1-12 11x12
l—»lz PV% — SP% | | 12
% 100 . SPPercent E
/i1 Output | PVPIDPercent!
11x12
> 12
E
1 Output ——
Select set Output 11x12
L pi|2
Select cleared Deviation(®)
Select

Select multiplier based on state of ControlAction

The values of EPercent, E, and PVPIDPercent are negated
when ControlAction is set.

(1) PVPIDPercent and Deviation are internal parameters used by the PID control algorithm.

Publication 1756-RM006C-EN-P - June 2003

Deviation high/low alarming

Deviation is the difference in value between the process variable (PV) and
setpoint (SP). Deviation alarming alerts the operator to a discrepancy between
the process variable and the setpoint value.

The high-high to low-low alarming algorithm compares the deviation to
deviation alarm limits and the deviation alarm limits plus or minus

the deadband.

deviation > DevHHLimit

DevHHAlarm
is set

DevHHAlarm
is cleared®

deviation < DevHHLimit - DevDeadband

-

deviation > DevHLimit

DevHAlarm
is set

DevHAlarm
is cleared®

deviation < DevHLimit - DevDeadband

deviation < —DevLLimit

DevLAlarm
is set

DevLAlarm
is cleared®

deviation > —DevLLimit + DevDeadband

deviation < —DevLLLimit

DevLLAlarm
is set

DevLLAlarm
is cleared®

deviation > —DevLLLimit + DevDeadband

-

(1) During instruction first scan, the instruction clears the deviation alarm outputs. The instruction also clears the
deviation alarm outputs and disables the alarming algorithm when PVFaulted or PVSpaninv is set.

Publication 1756-RM006C-EN-P - June 2003

Zero crossing deadband control

You can limit CV such that its value does not change when error remains
within the range specified by ZCDeadband
(| E | £ ZCDeadband).

ZCOff is cleared, ZCDeadband > 0, |E,| has crossed zero, and
|E| < ZCDeadband?
ZCOff is set, ZCDeadband > 0, and |E| < ZCDeadband ZCDeadBandon

ZCDeadBandOn
is cleared®

is set

|E,| > ZCDeadband

CVnq
Select set Output >

calculated CV

Select cleared CV based on state of ZCDeadbandOn.

ZCDeadbandOn CV = CV,,.; when ZCDeadbandOn is set.

Select

(1) When ZCOff is cleared, ZCDeadband > 0, error has crossed zero for the first time, (i.e. E, > 0and E4 <0 or
when E, <0and E,_; > 0), and | E, | < ZCDeadband, the instruction sets ZCDeadbandOn.

(2) On the transition to Auto or Cascade/Ratio mode, the instruction sets E, 4 = E,,.

The instruction disables the zero crossing algorithm and clears ZCDeadband
under these conditions:

e during instruction first scan

e ZCDeadband £0

e Auto or Cascade/Ratio is not the current mode
e PVFaulted is set

e PVSpanlnv is set

Publication 1756-RM006C-EN-P - June 2003

1-69

Feedforward control

Compute CV by summing CV from the zero crossing algorithm with AFE,
The value of AFF = FF - FF, ;. When FFSetPrevious is set, FF 1=

FFPrevious. This lets you preset FF, 4 to a specified value before the

instruction calculates the value of AFFE.

CV value based on the state of ZCDeadbandOn

(|1 Output

AFF

11+12

——»{12 PV% —SP%

CV +FF

Set FF,,_; = FFPrevious when FFSetPrevious is set

FF
|11 Output
FFPrevious -1
Select set Output | —p-{12
FFo1
———— P | Select cleared
FFSetPrevious Select

Selecting the control variable

Once the PID algorithm has been executed, select the CV based on program
or operator control and the current PID mode.

HandFB
CVOverride
CVPro

9 Select set Output
CVOper Select cleared
ProgOper Select

Calculated CV from

FeedForward algorithm

CV used for cascade/ration or auto mode

Manual mode

Select set Output

Select cleared

Select

Select set Output

Select cleared

Select

Select set Output ——p

Select cleared

Select

Selected CV

Publication 1756-RM006C-EN-P - June 2003

1-70

CV windup limiting

Limit the CV such that its value cannot increase when WindupHIn is set or
decrease when WindupLln is set. These inputs are typically the WindupHOut
or WindupLOut outputs from a secondary loop. The WindupHIn and
WindupLIn inputs are ignored if CVlnitializing, CVFault, or CVEUSpanlnv is
set.

selected CV p| if WindupHin and CV>CV,4 CVfrom windup algorithrm
WindupHin == - c 0o Coo B V=0V
— | if WindupLInand CV < CV,,¢
Winduplln - - - - - - - - - - - - - -~ | CV=CVpy

CV percent limiting

The following diagram illustrates how the instruction determines CV percent
limiting,

Cv> 100
CVHAlarm is cleared™® CV< 100 CVHAlarm is set
-
Cv<0
CVLAlarm is cleared cV>0 CVLAlarm is set
-
-~ a0
CV from windup algorithm e | if CVHAlarm is set CVlimited to 0-100%
CVHAlarm -~~~ -~~~ "~~~ [-- 9| CV=100 J
— | ifCVLAlarm is set
CVLAlarm - - - - - - - - - oo - - - p| CV=0

Publication 1756-RM006C-EN-P - June 2003

(1) During instruction first scan, the instruction clears the alarm outputs.

1-71

CV from 0-100% limit algorithm
CVHAlarm is set and (auto or cascade/ratio or
(manual and CVManLimiting is set))

CVLAlarm is set and (auto or cascade/ratio or
(manual and CVManLimiting is set))

CV high/low limiting

The instruction always performs alarming based on CVHLimit and CVLLimit.
Limit CV by CVHLimit and CVLLimit when in auto or cascade/ratio mode.
When in manual mode, limit CV by CVHLimit and CVLLimit when
CVManLimiting is set. Otherwise limit CV by 0 and 100 percent.

CV > CVHLimit
CVHAlarm is cleared® CV < CVHLimit CVHAlarm is set
-
CV < CVLLimit
CVLAlarm is cleared CV > CVLLimit CVLAlarm is set
-

- - CV limited to CV high/low limits
p | if CVHALARM is set .
| CV=CVHLimit J
— | ifCVLAlarm is set
,,,,,,,,,,,,,,, | CV=CVLLimit

(1) During instruction first scan, the instruction clears the alarm outputs.

CV rate-of-change limiting

The PIDE instruction limits the rate-of-change of CV when in Auto or
Cascade/Ratio mode or when in Manual mode and CVManLimiting is set. A

value of zero disables CV rate-of-change limiting.

The CV rate-of-change is calculated as:

CVROC = |CV,~CV,_|

CVROCDelta = CVROCLimitx DeltaT

where DeltaT is in seconds.

Publication 1756-RM006C-EN-P - June 2003

CV from CV high/low limit algorithm

Once CV rate-of-change has been calculated, the CV rate-of-change alarms are
determined as follows:

CVROC > CVROCDelta
F:VROCAIarm CVROC < CVROCDelta _CVROCAIarm
is cleared ¥ - is set
. o | iCV>CV,, CV output
CVROCalarm -~~~ -~~~ -~ e - [- - | CV=CV,+CVROCDelta
L ——B| ifCV<CVy,
S | CV=CV, - CVROCDelta

(1) During instruction first scan, the instruction clears the alarm output. The instruction also clears the alarm
output and disables the CV rate-of-change algorithm when CVinitializing is set.

(2) When in Auto or Cascade/Ratio mode or when in Manual mode and CVManLimiting is set, the instruction limits
the change of CV.

Updating the CVOper and CVProg values

If not in the Operator Manual mode, the PIDE instruction sets CVOper =
CV. This obtains bumpless mode switching from any control to the Operator
Manual mode.

CV from CV rate-of-change limiting CVOper
= | Input Output ————p
ProgOper or not Manual mode
........................ p | Enable
CV from CV rate-of-change limiting CVProg
= | Input Output —p»
(ProgOper is cleared or (not Manual mode))
and ProgVaIueReseﬁ isset » | Enable

Publication 1756-RM006C-EN-P - June 2003

1-73

Primary loop control

Primary loop control is typically used by a primary PID loop to obtain
bumpless switching and anti-reset windup when using Cascade/Ratio mode.
The primary loop control includes the initialize primary loop output and the
anti-reset windup outputs. The InitPrimary output is typically used by the
CVlInitReq input of a primary PID loop. The windup outputs are typically
used by the windup inputs of a primary loop to limit the windup of its CV

output.

CVinitializing is set or not Cascade/Ratio mode®

\l

InitPrimary
is cleared

InitPrimary
is set)

w

CVinitializing is cleared and Cascade/Ratio mode®®

SPHAlarm is set or appropriate CV alarm® >

WindupHOut
is set

WindupHOut

is cleared® SPHAlarm is cleared and no CV alarm®

SPLAlarm is set or appropriate CV alarm’)

WindupLOut
is cleared®

WindupLOut

i 8 .
SPLAlarm is cleared and no CV alarm(®) is set

(1) During instruction first scan, the instruction sets InitPrimary.
(2) When CVinitializing is set or when not in Cascade/Ratio mode the instruction sets InitPrimary.
(3) When CVinitializing is cleared and in Cascade/Ratio mode, the instruction clears InitPrimary.

(4) During instruction first scan, the instruction clears the windup outputs. The instruction also clears the windup
outputs and disables the CV windup algorithm when CVinitializing is set or if either CVFaulted or CVEUSpaninv
is set.

(5) The instruction sets WindupHOut when SPHAlarm is set, or when ControlAction is cleared and CVHAlarm is
set, or when ControlAction is set and CVLAlarm is set.

The SP and CV limits operate independently. A SP high limit does not prevent CV from increasing in value.
Likewise, a CV high or low limit does not prevent SP from increasing in value.

(6) The instruction clears WindupHOut when SPHAIlarm is cleared, and not (ControlAction is cleared and CVHAlarm
is set), and not (ControlAction is set and CVLAlarm is set).

(7) The instruction sets WindupLOut when SPLAlarm is set, or when ControlAction is cleared and CVLAlarm is set,
or when ControlAction is set and CVHAlarm is set.

The SP and CV limits operate independently. A SP low limit does not prevent CV from increasing in value.
likewise a CV low or high limit does not prevent SP from increasing in value.

(8) The instruction clears WindupLOut when SPLAlarm is cleared and not (ControlAction is cleared and CVLAlarm
is set) and not (ControlAction is set and CVHAlarm is set).

Publication 1756-RM006C-EN-P - June 2003

Processing faults

The following table describes how the instruction handles execution faults:

Fault condition:

Action:

CVFaulted is set or
CVEUSpaninv is set

e Instruction is not initialized, CVInitializing is cleared
o Compute PV and SP percent, calculate error, update internal parameters for

EPercent and PVPIDPercent

o PID control algorithm is not executed
o Disable the Auto and Cascade/Ratio modes. If Override or Hand is not the current

mode, set to Manual mode.
Set CV to value determined by Program or Operator control and mode (Manual,
Override, or Hand).

PVFaulted is set

Disable the Auto and Cascade/Ratio modes. If Override or Hand is not the current
mode, set to Manual mode

o PV high-low, PV rate-of-change, and deviation high-low alarm outputs are cleared
o PID control algorithm is not executed
o Set CV to value by determined by Program or Operator control and mode (Manual,

Override, or Hand).

PVSpaninv is set or
SPLimitsInv is set

Disable the Auto and Cascade/Ratio modes. If Override or Hand is not the current
mode, set to Manual mode

o Do not compute PV and SP percent
o PID control algorithm is not executed
o Set CV to value by determined by Program or Operator control and mode (Manual,

Override, or Hand).

RatioLimitsinv is set and
CasRat is set and
UseRatio is set

o If not already in Hand or Override, set to Manual model
o Disable the Cascade/Ratio mode
o Set CV to value determined by Program or Operator control and mode (Manual,

Override, or Hand).

TimingModelnv is set or
RTSTimeStamplnv is set or
DeltaTInv is set

If not already in Hand or Override, set to Manual mode

Publication 1756-RM006C-EN-P - June 2003

1-75

Position Proportional

(POSP)

Operands:

POSP (POSP_tag) ;

E FOSF 04

The POSP instruction opens or closes a device by pulsing open or close
contacts at a user defined cycle time with a pulse width proportional to the
difference between the desired and actual positions.

Structured Text

Operand: Type: Format: Description:
POSP tag POSITION_PROP structure POSP structure

Function Block

FOSF =
Position Praporienal Operand: Type: Format: Description:
o srF Opendut [5) block tag POSITION_PROP structure POSP structure
] Position ClozeQut
] OpenedFB
=] ClosedFB
POSITION_PROP Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
SP REAL Setpoint. This is the desired value for the position. This value must use the same engineering
units as Position.
Valid = any float
Default = 0.0
Position REAL Position feedback. This analog input comes from the position feedback from the device.
Valid = any float
Default = 0.0
OpenedFB BOOL Opened feedback. This input signals when the device is fully opened. When set, the open
output is not allowed to turn on.
Default is cleared.
ClosedFB BOOL Closed feedback. This input signals when the device is fully closed. When set, the close
output is not allowed to turn on.
Default is cleared.
PositionEUMax REAL Maximum scaled value of Position and SP.

Valid = any float
Default = 100.0

Publication 1756-RM006C-EN-P - June 2003

1-76

Input Parameter: Data Type: Description:

PositionEUMin REAL Minimum scaled value of Position and SP.
Valid = any float
Default = 0.0

CycleTime REAL Period of the output pulse in seconds. A value of zero clears both OpenOut and CloseOut. If
this value is invalid, the instruction assumes a value of zero and sets the appropriate hit
in Status.
Valid = any positive float
Default = 0.0

OpenRate REAL Open rate of the device in %/second. A value of zero clears OpenOut. If this value is invalid,
the instruction assumes a value of zero and sets the appropriate bit in Status.
Valid = any positive float
Default = 0.0

CloseRate REAL Close rate of the device in %/second. A value of zero clears CloseOut. If this value is invalid,
the instruction assumes a value of zero and sets the appropriate bit in Status.
Valid = any positive float
Default = 0.0

MaxOnTime REAL Maximum time in seconds that an open or close pulse can be on. If OpenTime or CloseTime is
calculated to be larger than this value, they are limited to this value. If this value is invalid,
the instruction assumes a value of CycleTime and sets the appropriate bit in Status.
Valid = 0.0 to CycleTime
Default = 0.0

MinOnTime REAL Minimum time in seconds that an open or close pulse can be on. If OpenTime or CloseTime is
calculated to be less than this value, they are set to zero. If this value is invalid, the
instruction assumes a value of zero and sets the appropriate bit in Status.
Valid = 0.0 to MaxOnTime
Default = 0.0

Deadtime REAL Additional pulse time in seconds to overcome friction in the device. Deadtime is added to the
OpenTime or CloseTime when the device changes direction or is stopped. If this value is
invalid, the instruction sets the appropriate bit in Status and uses a value of Deadtime = 0.0.
Valid = 0.0 to MaxOnTime
Default =0.0

Output Parameter; Data Type: Description:;

EnableOut BOOL Enable output.

OpenOut BOOL This output is pulsed to open the device.

CloseOut BOOL This output is pulsed to close the device.

PositionPercent REAL Position feedback is expressed as percent of the Position span. Arithmetic status flags are
set for this output.

SPPercent REAL Setpoint is expressed as percent of the Position span.

OpenTime REAL Pulse time in seconds of OpenOutput for the current cycle.

CloseTime REAL Pulse time in seconds of CloseOutput for the current cycle.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

CycleTimelnv BOOL Invalid CycleTime value. The instruction uses zero.

(Status.1)

Publication 1756-RM006C-EN-P - June 2003

1-77

Output Parameter: Data Type: Description:

OpenRatelnv BOOL Invalid OpenRate value. The instruction uses zero.
(Status.2)

CloseRatelnv BOOL Invalid CloseRate value. The instruction uses zero.
(Status.3)

MaxOnTimelnv BOOL Invalid MaxOnTime value. The instruction uses the CycleTime value.
(Status.4)

MinOnTimelnv BOOL Invalid MinOnTime value. The instruction uses zero.
(Status.5)

Deadtimelnv (Status.6) BOOL Invalid Deadtime value. The instruction uses zero.
PositionPctinv BOOL The calculated PositionPercent value is out of range.
(Status.?)

SPPercentinv BOOL The calculated SPPercent value is out of range.
(Statius.8)

PositionSpaninv BOOL PositionEUMax = PositionEUMin.

(Status.9)

Description: The POSP instruction usually receives the desired position setpoint from a

PID instruction output.

Scaling the position and set point values

The PositionPercent and SPPercent outputs are updated each time the
instruction is executed. If either of these values is out of range (less than 0% or
greater than 100%), the appropriate bit in Status is set, but the values are not
limited. The instruction uses these formulas to calculate whether the values are
in range:

Position —PositionEUMin

PositionPercent = x 100

PositionEUMax — PositionEUMin

SP —PositionEUMin

SPPercent = x 100

PositionEUMax — PositionEUMin

How the POSP instruction uses the internal cycle timer

The instruction uses CycleTime to determine how often to recalculate the
duration of Open and Close output pulses. An internal timer is maintained and
updated by DeltaT. DeltaT is the elapsed time since the instruction last
executed. Whenever the internal timer equals or exceeds the programmed
CycleTime (cycle time expires) the Open and Close outputs are recalculated.

Publication 1756-RM006C-EN-P - June 2003

You can change the CycleTime at any time.

If CycleTime = 0, the internal timer is cleared, OpenOut is cleared, and
CloseOut is cleared.

Producing output pulses

The following diagram shows the three primary states of the
POSP instruction.

OpenTime >0 Time OpenOut pulse
| OpenOut = set
CloseOut = cleared

| |
CycleTime expired OpenedFB = set or invalid input

PositionPercent > 100

OpenTime expires PositionPercent >
SPPercent
CycleTime expired $ $
Calculate - Wait for next cycle
Open/Close OpenTime = 0 and OpenOut = cleared
pulse times CloseTime =0 - CloseOut = cleared

A A

ClosedFB = set or invalid input
PositionPercent < 100
AN

N CloseTime expires PositionPercent >
AN SPPercent
CycleTime expired \\ ‘ ‘

CloseTime > 0 Time CIose_Out pulse
- OpenOut = cleared

CloseOut = set

Publication 1756-RM006C-EN-P - June 2003

1-79

Calculating open and close pulse times

OpenOut is pulsed whenever SP > Position feedback. When this occurs, the
instruction sets CloseTime = 0 and the duration for which OpenOut is to be
turned on is calculated as:

0 . _ SPPercent— PositionPercent
penTime =
OpenRate

e If OpenTime, ; < CycleTime, then add Deadtime to OpenTime.

e If OpenTime > MaxOnTime, then limit to MaxOnTime.
e If OpenTime < MinOnTime, then set OpenTime = 0.

If any of the following conditions exist, OpenOut is not pulsed and
OpenTime = 0.

® OpenEB is set or PositionPercent = 100
e CycleTime =0
e OpenRate = 0

e SPPercent is invalid

The CloseOut is pulsed whenever SP < Position feedback. When this occurs,
the instruction sets OpenTime = 0 and the duration for which CloseOut is to
be turned on is calculated as:

PositionPercent — SPPercent
CloseRate

CloseTime =

e If CloseTime, | < CycleTime, then add Deadtime to CloseTime.

o If CloseTime > MaxOnTime, then limit to MaxOnTime.
o If CloseTime < MinOnTime, then set CloseTime to 0.

If any of the following conditions exist, CloseOut will not be pulsed and
CloseTime will be cleared.

o ClosedFB is set or PositionPercent < 0
e CycleTime =0
e CloseRate =0

o SPPercent is invalid

OpenOut and CloseOut will not be pulsed if SPPercent equals
PositionPercent. Both OpenTime and CloseTime will be cleared.

Publication 1756-RM006C-EN-P - June 2003

Arithmetic Status Flags: Arithmetic status flags are set for the PositionPercent output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan OpenOut and CloseOut are cleared. OpenOut and CloseOut are cleared.

OpenTime =0
CloseTime = 0.

OpenTime =0
CloseTime = 0.

instruction first scan

The internal cycle timer is reset.

The instruction calculates OpenTime and Close Time.

The internal cycle timer is reset.
The instruction calculates OpenTime and Close Time.

instruction first run

No action taken.

No action taken.

Enableln is cleared

EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: 1In this example, the POSP instruction opens or closes a motor-operated valve
based on the CVEU output of the PIDE instruction. The actual valve position
is wired into the Position input and optional limit switches, which show if the
valve is fully opened or closed, are wired into the Opened'B and ClosedFB
inputs. The OpenOunt and CloseOut outputs are wired to the open and close
contacts on the motor-operated valve.

Structured Text

FlowController.PV := WaterFlowRate;

PIDE (FlowController) ;

FlowValve.SP := FlowController.CVEU;

FlowValve.Position :=
FlowValve.OpenedFB :=
FlowValve.ClosedFB :=
POSP (FlowValve) ;

OpenFlowValveContact

CloseFlowValveContact

Publication 1756-RM006C-EN-P - June 2003

FlowValvePosition;
FlowValveOpened;
FlowValveClosed;

FlowValve.OpenOut;

:= FlowValve.CloseOut;

1-81

Function Block

Flow Controller

prwring
[mi
[
=
[mi
[
[mi
=]
=]
o
o
o
(O]
o

Flowalwe

FIDE [|
Enhanced PID

P CWEL [
SPProg PO
SPCazcade P'YHHAam [
RatioProg PrHAamm 5
CWProg PwLiam [
FF PwLlMam 5
HandFB PR OCPosAam [
ProgProgReq PWROCHegAam 3

Prog OperReq Dew HHAam
ProgCasRat Req DeuHAlarrnE
Prog Auto Rigg Dy Larm [5
ProghtanualReq DevllL™am 3
Prog Owerride Reg Prog Oper [=]
ProgHandRizq CazRat[=
Ao [5
hlanual 5
Orverride [
Hard [

Flow*alvePosition
FlowAlveOpened
FlowalveClosed

Position Proportional

5P
Fuasition
OpenedF B
ClosedFB

FO%P

OpenOut [m— Open Flow'ahre Contact
Close Out [F— CloseFlow'ale Contact

Publication 1756-RM006C-EN-P - June 2003

Ram p/SOak (RM PS) The RMPS instruction provides for a number of segments of alternating ramp
and soak periods.
Operands:
Structured Text
RMPS (RMPS tag, RampValue, —
SoakValue, SoakTime) : Operand: Type: Format: Description:
RMPS tag RAMP_ structure RMPS structure
SOAK
RampValue REAL array Ramp Value array. Enter a ramp value for

each segment (0 to NumberOfSegs-1). Ramp
values are entered as time in minutes or as a
rate in units/minute. The TimeRate
parameter reflects which method is used to
specify the ramp. If a ramp value is invalid,
the instruction sets the appropriate bit in
Status and changes to Operator Manual or
Program Hold mode. The array must be at
least as large as NumberOfSegs.

valid = 0.0 to maximum positive float

SoakValue REAL array Soak Value array. Enter a soak value for each
segment (0 to NumberOfSegs-1). The array
must be at least as large as NumberOfSegs.
valid = any float

SoakTime REAL array Soak Time array. Enter a soak time for each
segment (0 to NumberOfSegs-1). Soak times
are entered in minutes. If a soak value is
invalid, the instruction sets the appropriate
bit in Status and changes to Operator Manual
or Program Hold mode. The array must be at
least as large as NumberOfSegs.
valid = 0.0 to maximum positive float

E RMPS 01 Function Block
RMFPS E
Ramp/Saak The operands are the same as for the structured text RMPS instruction.

o Fv out 5
O CurrentSegProg CurrentSeg [0
O QutPrag SoakTimeleft [0
O SoakTimeFrog FuarRampOn [0
5| FrogProgReq GuarSoakOn [
5| FrogOperReq FrogQper [0
] ProgAutoReq Auto [
= FroghianualReq Manual @
= FrogHaoldReq Hold @

Ramp'alue

SoakValue

SoakTime

Publication 1756-RM006C-EN-P - June 2003

1-83

RAMP_SOAK Structure:

Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
PV REAL The scaled analog temperature signal input to the instruction.
Valid = any float
Default = 0.0

PVFault BOOL Bad health indicator of PV. If set, the input is invalid, the instruction is placed in Program Hold
or Operator Manual mode, and the instruction sets the appropriate bit in Status.
Default is cleared.

NumberOfSegs DINT Number of segments. Specify the number of ramp/soak segments used by the instruction.
The arrays for RampValue, SoakValue, and SoakTime must be at least as large as
NumberOfSegs. If this value is invalid, the instruction is placed into Operator Manual or
Program Hold mode and the instruction sets the appropriate bit in Status.

Valid = 1 to (minimum size of RampValue, SoakValue, or SoakTime arrays)
Default = 1

ManHoldAftInit BOOL Manual/Hold after initialization. If set, the ramp/soak is in Operator Manual or Program Hold
mode after initialization completes. Otherwise, the ramp/soak remains is in its previous
mode after initialization completes.

Default is cleared.

CyclicSingle BOOL Cyclic/single execution. Set for cyclic action or clear for single action. Cyclic action
continuously repeats the ramp/soak profile. Single action performs the ramp/soak profile
once and then stops.

Default is cleared.

TimeRate BOOL Time/rate ramp value configuration. Set if the RampValue parameters are entered as a time
in minutes to reach the soak temperature. Clear if the RampValue parameters are entered as
a rate in units/minute.

Default is cleared.

GuarRamp BOOL Guaranteed ramp. If set and the instruction is in auto, ramping is temporarily suspended if
the PV differs from the Output by more than RampDeadband.
Default is cleared.

RampDeadband REAL Guaranteed ramp deadband. Specify the amount in engineering units that PV is allowed to
differ from the output when GuarRamp is on. If this value is invalid, the instruction sets
RampDeadband = 0.0 and the instruction sets the appropriate bit in Status.

Valid = any float > 0.0
Default =0.0

GuarSoak BOOL Guaranteed soak. If set and the instruction is in auto, the soak timer is cleared if the PV

differs from the Output by more than SoakDeadband.
Default is cleared.
SoakDeadband REAL Guaranteed soak deadband. Specify the amount in engineering units that the PV is allowed

to differ from the output when GuarSoak is on. If this value is invalid, the instruction sets
SoakDeadband = 0.0 and the instruction sets the appropriate bit in Status.

Valid = any float > 0.0

Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

Input Parameter: Data Type: Description:

CurrentSegProg DINT Current segment program. The user program writes a requested value for the CurrentSeg into
this input. This value is used if the ramp/soak is in Program Manual mode. If this value is
invalid, the instruction sets the appropriate bit in Status.

Valid = 0 to NumberOfSegs-1
Default =0

OutProg REAL Output program. The user program writes a requested value for the Out into this input. This
value is used as the Out when the ramp/soak is in Program Manual mode.
Valid = any float
Default = 0.0

SoakTimeProg REAL Soak time program. The user program writes a requested value for the SoakTimeLeft into this
input. This value is used if the ramp/soak is in Program Manual mode. If this value is invalid,
the instruction sets the appropriate bit in Status.

Valid = 0.0 to maximum positive float
Default = 0.0

CurrentSegQOper DINT Current segment operator. The operator interface writes a requested value for the
CurrentSeg into this input. This value is used if the ramp/soak is in Operator Manual mode. If
this value is invalid, the instruction sets the appropriate bit in Status.

Valid = 0 to NumberOfSegs-1
Default =0

OutOper REAL Output operator. The operator interface writes a requested value for the Out into this input.
This value is used as the Out when the ramp/soak is in Operator Manual mode.

Valid = any float
Default = 0.0

SoakTimeOper REAL Soak time operator. The operator interface writes a requested value for the SoakTimeLeft
into this input. This value is used if the ramp/soak is in Operator Manual mode. If this value
is invalid, the instruction sets the appropriate bit in Status.

Valid = 0.0 to maximum positive float
Default = 0.0

ProgProgReq BOOL Program program request. Set by the user program to request Program control. Ignored if
ProgOperReq is set. Holding this set and ProgOperReq cleared locks the instruction in
Program control.

Default is cleared.

ProgOperReq BOOL Program operator request. Set by the user program to request Operator control. Holding this
set locks the instruction in Operator control.
Default is cleared.

ProgAutoReq BOOL Program auto mode request. Set by the user program to request the ramp/soak to enter Auto
mode. Ignored if the loop is in Operator control, if ProgManualReq is set, or if ProgHoldReq
is set.

Default is cleared.

ProgManualReq BOOL Program manual mode request. Set by the user program to request the ramp/soak to enter
Manual mode. Ignored if the ramp/soak is in Operator control or if ProgHoldReq is set.
Default is cleared.

ProgHoldReq BOOL Program hold mode request. Set by the user program to request to stop the ramp/soak
without changing the Out, CurrentSeg, or SoakTimeLeft. Also useful when a PID loop
getting its setpoint from the ramp/soak leaves cascade. An operator can accomplish the
same thing by placing the ramp/soak into Operator Manual mode.

Default is cleared.
OperProgReq BOOL Operator program request. Set by the operator interface to request Program control. Ignored

if ProgOperReq is set. The instruction clears this input.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-85

Input Parameter: Data Type: Description:

OperOperReq BOOL Operator operator request. Set by the operator interface to request Operator control. Ignored
if ProgProgReq is set and ProgOperReq is cleared. The instruction clears this input.
Default is cleared.

OperAutoReq BOOL Operator auto mode request. Set by the operator interface to request the ramp/soak to enter
Auto mode. Ignored if the loop is in Program control or if OperManualReq is set. The
instruction clears this input.

Default is cleared.

OperManualReq BOOL Operator manual mode request. Set by the operator interface to request the ramp/soak to
enter Manual mode. Ignored if the loop is in Program control. The instruction clears
this input.
Default is cleared.

Initialize BOOL Initialize program and operator values. When set and in manual, the instruction sets
CurrentSegProg = 0, CurrentSegOper = 0, SoakTimeProg = SoakTime[0], and
SoakTimeOper = SoakTime[0]. Initialize is ignored when in Auto or Hold mode. The
instruction clears this parameter.
Default is cleared.

ProgValueReset BOOL Reset program control values. When set, the instruction clears ProgProgReq, ProgOperReq,
ProgAutoReq, ProgHoldReq, and ProgManualReq.
Default is cleared.

Input Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The output of the ramp/soak instruction. Arithmetic status flags are used for this output.

CurrentSeg DINT Current segment number. Displays the current segment number in the ramp/soak cycle.
Segments start numbering at 0.

SoakTimeLeft REAL Soak time left. Displays the soak time remaining for the current soak.

GuarRampOn BOOL Guaranteed ramp status. Set if the Guaranteed Ramp feature is in use and the ramp is
temporarily suspended because the PV differs from the output by more than the
RampDeadband.

GuarSoakOn BOOL Guaranteed soak status. Set if the Guaranteed Soak feature is in use and the soak timer is
cleared because the PV differs from the output by more than the SoakDeadband.

ProgOper BOOL Program/Qperator control indicator. Set when in Program control. Cleared when in
Operator control.

Auto BOOL Auto mode. Set when the ramp/soak is in Program Auto or Operator Auto mode.

Manual BOOL Manual mode. Set when the ramp/soak is in Program Manual or Operator Manual mode.

Hold BOOL Hold mode. Set when the ramp/soak is in program Hold mode.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

PVFaulted (Status.1) ~ BOOL PVHealth is bad.

NumberOfSegsinv BOOL The NumberOfSegs value is invalid value or is not compatible with an array size.

(Status.2)

RampDeadbandinv BOOL Invalid RampDeadband value.

(Status.3)

Publication 1756-RM006C-EN-P - June 2003

Input Parameter: Data Type: Description:
SoakDeadbandInv BOOL Invalid SoakDeadband value.
(Status.4)
CurrSegProginv BOOL Invalid CurrSegProg value.
(Status.5)
SoakTimeProglnv BOOL Invalid SoakTimeProg value.
(Status.6)
CurrSegOperinv BOOL Invalid CurrSegOper value.
(Status.?)
SoakTimeQperinv BOOL Invalid SoakTimeOper value.
(Status.8)
RampValuelnv BOOL Invalid RampValue value.
(Status.9)
SoakTimelnv BOOL Invalid SoakTime value.
(Status.10)

Description: The RMPS instruction is typically used to provide a temperature profile in a

Publication 1756-RM006C-EN-P - June 2003

batch heating process. The output of this instruction is typically the input to
the setpoint of a PID loop.

Whenever the value computed for the output is invalid, NAN, or £INEF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. The internal parameters are not updated. In each subsequent scan, the
output is computed using the internal parameters from the last scan when the
output was valid.

Monitoring the RMPS instruction

There is an operator faceplate available for the RMPS instruction. For more
information, see appendix Function Block Faceplate Controls.

1-87

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan All the operator request inputs are cleared.

If ProgValueReset is set, all the program request inputs are cleared.
The operator control mode is set to manual mode if the current mode is hold.
See the tables below.

instruction first run CurrentSegment = 0.
SoakTimeProg and SoakTimeOper = SoakTime[0] if SoakTime[0] is valid.
Mode is set to operator manual.

Out,.4 =0.0.
Enableln is cleared EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.
Enableln is set The instruction executes. Enableln is always set.
EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

Initial mode applied on instruction first scan

The following table shows the ending control based on the program request

inputs.
Prog Prog Prog First
Oper Prog Value Run:
Control at Start of First Scan: Req: Req: Reset: Control at End of First Scan:
Operator control cleared set cleared na Program control
na cleared na na Operator control
Program control set na cleared cleared Operator control
na na set set

cleared cleared cleared set

cleared set cleared na

na na set cleared

cleared cleared cleared cleared

Publication 1756-RM006C-EN-P - June 2003

The following table shows the ending control based on the Manual, Auto, and
Hold mode requests.

Oper Oper Prog Prog Prog Manual Prog First
Auto Man Auto Man Hold Hold Value Run

Control at Start of Req: Req: Req: Req: Req: After Reset: Control at End of First Scan:

First Scan: Init:

Operator control na na na na na cleared na cleared Operator current mode
na na na na na na na set Operator Manual mode
na na na na na set na na

Program control na na cleared cleared cleared cleared na cleared Program current mode
na na na na na cleared set cleared
na na set cleared cleared cleared cleared na Program Auto mode
na na na set cleared cleared cleared na Program Manual mode
na na na na set cleared cleared na Program Hold mode
na na na na na set na na

Example: 1In this example, the RMPS instruction drives the setpoint of a PIDE

Publication 1756-RM006C-EN-P - June 2003

instruction. When the PIDE instruction is in Cascade/Ratio mode, the output
of the RMPS instruction is used as the setpoint. The PV to the PIDE
instruction can be optionally fed into the PV input of the RMPS instruction if
you want to use guaranteed ramping and/or guaranteed soaking,

In this example, the AutoclaveRSSoakValue, AutoclaveRSSoakTime, and
AutoclaveRSRampValue arrays are REAL arrays with 10 elements to allow up
to a 10 segment RMPS profile.

Structured Text

AutoclaveRS.PV := AutoclaveTemp;

RMPS (AutoclaveRS,AutoclaveRSRampValue,
AutoclaveRSSoakValue, AutoclaveRSSoakTime) ;

AutoclaveTempController.PV := AutoclaveTemp;
AutoclaveTempController.SPCascade := AutoclaveRS.Out;

PIDE (AutoclaveTempController) ;

SteamValve := AutoclaveTempController.CVEU;

1-89

Function Block

AutoclaveTempContraller

FIDE El
. Enhanced PID
o rv CWEU o Steamvalve |
o SFFrog]
AutoclaveRis SPCascade FYHHALam [0
RMPS EI] RatioPrag FWHAlam [
Ramp/Saak 0 cWProg PYLAlarm [0
P Dut O FF FYLLAlam =
O CurrentSegFrog CurrentSeg [0 O HandFB PYROCFosAlarm [0
] CutProg SoakTimeleft O & ProgProgReq FWROCHegAlam [0
] SoakTimeFrog GuarRampOn [0 = ProgOperReq LevHHAlarm [
] ProgProgReq GuarSoakOn [0] ProgCasRatReq CrevHAlarm [
= ProglperReg FroegQOper [0] ProghuteReq DevwlAlarm 2
=] FrogAutoReq Auto [| FroghlanualReq DevllAlarm [0
=] ProghlanualReq hanual & & ProgOwerrideReq FrogOper [0
=] PregHoldReqg Hold-[5} =] PragHandReq CasRat[5
SoakValue AutoclaveRSSoakalue Auta 5
SoakTime AutoclaveRSS0akTime hanual [0
RampWalue AutoclaveRSRampyalue Cwerride [0
Hand 5

Switching between Program control and Operator control

The RMPS instruction can be controlled by either a user program or through
an operator interface. Control can be changed any time.

/ . user program sets ProgOperReq®) / N
request takes precedence and is always granted

operator sets OperOperReq(z)

granted if ProgProgReq is cleared

Program Control Operator Control

user program sets ProgProgReq
granted if ProgOperReq is cleared

operator sets OperProgReq
granted if ProgOperReq and OperOperReq are cleared

N N

(1) You can lock the instruction in Operator control by leaving ProgOperReq set.

(2) You can lock the instruction in Program control by leaving ProgProgReq set while ProgOperReq is cleared

Publication 1756-RM006C-EN-P - June 2003

When transitioning from Operator control to Program control while the
ProgAutoReq, ProgManualReq, and ProgHoldReq inputs are cleared, the
mode is determined as follows:

e If the instruction was in Operator Auto mode, then the transition is to
Program Auto mode.

e If the instruction was in Operator Manual mode, then the transition is to
Program Manual mode.

When transitioning from Program control to Operator control while the
OperAutoReq and OperManualReq inputs are cleared, the mode is

determined as follows:

e If the instruction was in Program Auto mode, then the transition is to
Operator Auto mode.

e If the instruction was in Program Manual or Program Hold mode, then
the transition is to Operator Manual mode.

Publication 1756-RM006C-EN-P - June 2003

ProgManualReq set and
ProgHoldReq = cleared

Program control

The following diagram illustrates how the RMPS instruction operates in
Program control.

single execution of profile complete(z)

ProgHoldReq set

ProgAutoReq set,),
ProgHoldReq cleared, and
ProgManualReq cleared

Program Auto Mode

\ invalid input®

j ProgHoldReq set

ProgAutoReq set, !
ProgHoldReq cleared, and
ProgManualReq cleared v v v

L

Program Manual Mode 1

invalid inputs®

Program Hold Mode

ProgManualReq is set and ProgHoldReq is cleared

-

In single (non-cyclic) execution, you must toggle ProgAutoReq from cleared to set if one execution of the
ramp/soak profile is complete and you want another execution of the ramp/soak profile.

When the instruction is configured for single execution, and the Auto mode Ramp-Soak profile completes, the
instruction transitions to Hold mode.

The instruction is placed in Hold mode if PVFaulted is set or any of the following inputs are invalid:
NumberOfSegs, CurrentSeg, SoakTimeLeft, CurrentSegProg, or SoakTimeProg.

The following table describes the possible Program modes.

Mode:

Description:

Program Auto Mode

While in Auto mode, the instruction sequentially executes the
ramp/soak profile.

Program Manual Mode

While in Manual mode the user program directly controls the instruction’s
Out. The CurrentSegProg, SoakTimeProg, and OutProg inputs are transferred
to the CurrentSeg, SoakTimeLeft, and Out outputs. When the instruction is
placed in auto mode, the ramp/soak function resumes with the values last
input from the user program. CurrentSegProg and SoakTimeProg are not
transferred if they are invalid.

To facilitate a “bumpless” transition into Manual mode, the CurrentSegProg,
SoakTimeProg, and OutProg inputs are continuously updated to the current
values of CurrentSeg, SoakTimeLeft, and Out when ProgValueReset is set and
the instruction is not in Program Manual mode.

Program Hold Mode

While in Hold mode, the instruction’s outputs are maintained at their current
values. If in this mode when ProgOperReq is set to change to Operator
control, the instruction changes to Operator Manual mode.

Publication 1756-RM006C-EN-P - June 2003

Operator control

The following diagram illustrates how the RMPS instruction operates in
Operator control.

/ \ OperManualReq set / \

single execution of profile complete(l)

\l

Operator Auto Mode invalid inputs'® Operator Manual Mode

y

OperAutoReq is set and OperManualReq is

(1) When the instruction is configured for Single Execution, and the Auto mode ramp/soak profile completes, the
instruction transitions to manual mode.

(2) The instruction is placed in Manual mode if PVFaulted is set or any of the following inputs are invalid:
NumberOfSegs, CurrentSeg, SoakTimeLeft, CurrentSegOper, or SoakTimeOper.

The following table describes the possible Operator modes

Mode: Description:

Operator Auto Mode While in Auto mode, the instruction sequentially executes the
ramp/soak profile

Operator Manual Mode While in Manual mode the operator directly controls the instruction’s Out. The
CurrentSegOper, SoakTimeOper, and OutOper inputs are transferred to the
CurrentSeg, SoakTimeLeft, and Out outputs. When the instruction is placed
in Auto mode, the ramp/soak function resumes with the values last input from
the operator. CurrentSegOper and SoakTime are not transferred if they
are invalid.

To facilitate a “bumpless” transition into Manual mode, the CurrentSegOper,
SoakTimeOper, and OutOper inputs are continuously updated to the current
values of CurrentSeg, SoakTimeLeft, and Out whenever the instruction is not
in Operator Manual mode.

Publication 1756-RM006C-EN-P - June 2003

1-93

Executing the ramp/soak profile

The following diagram illustrates how the RMPS instruction executes the

ramp/soak profile.
return from Manual return from Manual
or Hold mode® or Hold mode®
Out = SoakValue of CurrentSegment Out = SoakValue of CurrentSegment

SoakTimeLeft > 0

R C

SoakTimeLeft = 0@
-

Ramp <cyclic execution of profile complete® Soak

Out = Soakvalue®

N

Out = SoakValue of CurrentSegment single execution of profile complete®
SoakTimeLeft =0

return from Manual

or Hold made®

(1) The Ramp is complete when Out = SoakValue. If, during ramp execution, Out > SoakValue, Out is limited to
SoakValue.

(2) Soaking is complete when Out is held for the amount of time specified in the current segment’s SoakTime. If
the segment executed was not the last segment, CurrentSeg increments by one.

(3) Soaking has completed for the last programmed segment and the instruction is configured for cyclic execution.
The instruction sets CurrentSeg = 0.0.

(4) Soaking has completed for the last programmed segment and the instruction is configured for single execution.

(5) When returning to Auto mode, the instruction determines if ramping or soaking resumes. What to do next
depends on the values of Out, SoakTimeLeft, and the SoakValue of the current segment. If Out = SoakValue for
the current segment, and SoakTimeLeft = 0, then the current segment has completed and the next
segment starts.

Ramping

The ramp cycle ramps Out from the previous segment’s SoakValue to the
current segment’s SoakValue. The time in which the ramp is traversed is
defined by the RampValue parameters.

Ramping is positive if Out < target SoakValue of the current segment. If the

ramp equation calculates a new Out which exceeds the target SoakValue, the
Out is set to the target SoakValue.

Publication 1756-RM006C-EN-P - June 2003

Ramping is negative if Out > the target SoakValue of the current segment. If
the ramp equation calculates a new Out which is less then the target
SoakValue, the Out is set to the target SoakValue.

Each segment has a ramp value. You have the option of programming the
ramp in units of time or rate. All segments must be programmed in the same
units. The following table describes the ramping options:

Parameter:

Description:

time-based ramping

TimeRate is set for time-based ramping (in minutes)

The rate of change for the current segment is calculated and either added or
subtracted to Out until Out reaches the current segment’s soak value. In the
following equation deltaT is the elapsed time in minutes since the instruction
last executed.

SoakValue, . —RampStart
Out = Out i(CurreniSeg i) x At

Ramp ValueCurrentSeg

Where RampStart is the value of Out at the start of the Current Segment.

rate-based ramping

TimeRate is cleared for rate-based ramping (in units/minute)

The programmed rate of change is either added or subtracted to Out until Out
reaches the current segment’s soak value. In the following equation deltaT is
the elapsed time in minutes since the instruction last executed.

Out = Out* Ramp Valuecwremseg x At

Publication 1756-RM006C-EN-P - June 2003

Guaranteed ramping

Set the input GuarRamp to enable guaranteed ramping. When enabled, the
instruction monitors the difference between Out and PV. If the difference is
outside of the programmed RampDeadband, the output is left unchanged until
the difference between PV and Out are within the deadband. The output
GuarRampOn is set whenever Out is held due to guaranteed ramping being in
effect.

Soaking

Soaking is the amount of time the block output is to remain unchanged until
the next ramp-soak segment is started. The soak cycle holds the output at the
SoakValue for a programmed amount of time before proceeding to the next
segment. The amount of time the output is to soak is programmed in the
SoakTime parameters.

1-95

Each segment has a SoakValue and SoakTime. Soaking begins when Out is
ramped to the current segment’s SoakValue. SoakTimeLeft represents the time
in minutes remaining for the output to soak. During ramping, SoakTimeLeft is
set to the current segment’s SoakTime. Once ramping is complete,
SoakTimeLeft is decreased to reflect the time in minutes remaining for the
current segment. SoakTimeLeft = 0 when SoakTime expires.

Guaranteed soaking

Set the input GuarSoak to enable guaranteed soaking, When enabled, the
instruction monitors the difference between Out and PV. If the difference is
outside of the SoakDeadband, timing of the soak cycle is suspended and the
internal soak timer is cleared. When the difference between Out and PV
returns to within the deadband, timing resumes. The output GuarSoak is set
when timing is held due to guaranteed soaking being in effect.

Publication 1756-RM006C-EN-P - June 2003

1-96

Scale (SCL)

Operands:

SCL (SCL_tag) ;

sCL_0d

SCL |Z|

Scale

Out &

The SCL instruction converts an unscaled input value to a floating point value
in engineering units.

Structured Text

Operand: Type: Format: Description:

SCL tag SCALE structure SCL structure

Function Block

Operand: Type: Format: Description:

SCL tag SCALE structure SCL structure

SCALE Structure

Input Parameter:

Data Type:

Description:

Enableln

BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

REAL

The analog signal input.
Valid = any real value
Default = 0.0

InRawMax

REAL

The maximum value attainable by the input to the instruction. If InRawMax < InRawMin, the
instruction sets the appropriate bit in Status and stops updating the output.

Valid = InRawMax > InRawMin

Default =0.0

InRawMin

REAL

The minimum value attainable by the input to the instruction. If InRawMin > InRawMax, the
instruction sets the appropriate bit in Status and stops updating the output.

Valid = InRawMin < InRawMax

Default = 0.0

INEUMax

REAL

The scaled value of the input corresponding to InRawMax.
Valid = any real value
Default = 0.0

INEUMin

REAL

The scaled value of the input corresponding to InRawMin.
Valid = any real value
Default = 0.0

Limiting

BOOL

Limiting selector. If set, Out is limited to between INEUMin and InEUMax.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-97

Output Parameter; Data Type: Description;
EnableOut BOOL Enable output.
Out REAL The output that represents scaled value of the analog input. Arithmetic status flags are set
for this output.
valid = any real value
default = InEUMin
MaxAlarm BOOL The above maximum input alarm indicator. This value is set when In> InRawMax.
MinAlarm BOOL The below minimum input alarm indicator. This value is set when In < InRawMin.
Status DINT Status of the function block.
InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.
InRawRangelnv BOOL InRawMin > InRawMax.
(Status.1)
Description: Use the SCL instruction with analog input modules that do not support scaling

Out = (In—InRawMin) x (

to a full resolution floating point value.

For example, the 1771-IFE module is a 12-bit analog input module that
supports scaling only in integer values. If you use a 1771-IFE module to read a
flow of 0-100 gallons per minute (gpm), you typically do not scale the module
from 0-100 because that limits the resolution of the module. Instead, use the
SCL instruction and configure the module to return an unscaled (0-4095)
value, which the SCL instruction converts to 0-100 gpm (floating point)
without a loss of resolution. This scaled value could then be used as an input
to other instructions.

The SCL instruction uses this algorithm to convert unscaled input into a scaled
value:

InEUMax —InEUMin
InRawMax — InRawMi

V) + InEUMin

Publication 1756-RM006C-EN-P - June 2003

Alarming

Once the instruction calculates Out, the MaxAlarm and MinAlarm are

determined as follows:

In > InRawMax
|

MaxAlarm = cleared) MaxAlarm = set
In < InRawMin

In < InRawMax

>

MinAlarm = cleared MaxAlarm = set
In > InRawMin

Limiting

Limiting is performed on Out when Limiting is set. The instruction sets
Out = InEUMax when In > InRawMax. The instruction sets Out = InEUMin

when In < InRawMin.

Limiting set
In > InRawMax

Out = InEUMax Limiting set Out = InEUMin
In < InRawMin

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

1-99

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first scan

No action taken.

No action taken.

Enableln is cleared

EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: The SCL instruction is typically used with analog input modules that do not
support on-board scaling to floating point engineering units. In this example,
the SCL instruction scales an analog input from a 1771-IFE module. The
instruction places the result in Ox#, which is used by an ALM instruction.

Structured Text

SCL _01.In := InputOFroml771IFE;

SCL(SCL_01) ;

ALM 01.In := SCL 01.0ut;

ALM (ALM 01);

Function Block

SCL_01 ALM_0

InputdFrom4771IFE [In

SCL = ALbA =

Scale Alarm

Out (] In HHAlarm

HaAlarm
LAlarm
LLAlarm
ROCPaozAlarm

OO RO RRC NG|

ROCHegAlarm

Publication 1756-RM006C-EN-P - June 2003

1-100

Spl it Range Time The SRTP instruction takes the 0-100% output of a PID loop and drives
: heating and cooling digital output contacts with a periodic pulse. This
Proportlonal (SRTP) instruction controls applications such as barrel temperature control on

extrusion machines.

Operands:

SRTP (SRTP_tag) ; Structured Text
Operand: Type: Format: Description:
SRTP tag SPLIT_RANGE structure SRTP structure

E Function Block

SRTP_0Z

SRTR] Operand: Type: Format: Description:
Fplit Rangs Time Froperisnal functian SRTPtag SPLIT_RANGE structure SRTP structure

dlIn HeatOut O

CoolQut [0
HeatTimeFercent [
]}

CoolTimePercent

SPLIT_RANGE Structure

Input Parameter: Data Type: Description:;

Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.

In REAL The analog signal input asking for heating or cooling. This input typically comes from the
CVEU of a PID loop.
Valid = any float

CycleTime REAL The period of the output pulses in seconds. A value of zero turns off both heat and cool
outputs. If this value is invalid, the instruction assumes a value of zero and sets the
appropriate bit in Status.

Valid = any positive float
Default =0.0

MaxHeatIn REAL Maximum heat input. This value specifies the percentage of the In which will cause
maximum heating. This is typically 100% for a heat/cool loop.
Valid = any float
Default = 100.0

MinHeatIn REAL Minimum heat input. Specify the percent of In that represents the start of the heating range
and causes minimum heating. This is typically 50% for a heat/cool loop.
Valid = any float
Default = 50.0

Publication 1756-RM006C-EN-P - June 2003

1-101

Input Parameter: Data Type: Description:

MaxCoolln REAL Maximum cool input. Specify the percent of In that causes maximum cooling. This is typically
0% for a heat/cool loop.
Valid = any float
Default = 0.0

MinCoolln REAL Minimum cool input. Specify the percent of In that causes minimum cooling. This is typically
50% for a heat/cool loop.
Valid = any float
Default = 50.0

MaxHeatTime REAL Maximum heat time in seconds. Specify the maximum time in seconds that a heating pulse
can be on. If the instruction calculates HeatTime to be greater than this value, HeatTime is
limited to MaxHeatTime. If MaxHeatTime is invalid, the instruction assumes a value of
CycleTime and sets the appropriate bit in Status.
Valid = 0.0 to CycleTime
Default = 0.0

MinHeatTime REAL Minimum heat time in seconds. Specify the minimum time in seconds that a heating pulse
can be on. If the instruction calculates HeatTime to be less than this value, HeatTime is set to
zero. If MinHeatTime is invalid, the instruction assumes a value of zero and sets the
appropriate bit in Status.
Valid = 0.0 to MaxHeatTime
Default = 0.0

MaxCoolTime REAL Maximum cool time in seconds. Specify the maximum time in seconds that a cooling pulse
can be on. If the instruction calculates CoolTime to be larger than this value, CoolTime is
limited to MaxCoolTime. If MaxCoolTime is invalid, the instruction assumes a value of
CycleTime and sets the appropriate bit in Status.
Valid = 0.0 to CycleTime
Default = 0.0

MinCoolTime REAL Minimum cool time in seconds. Specify the minimum time in seconds that a cooling pulse

can be on. If the instruction calculates CoolTime to be less than this value, CoolTime is set to
zero. If MinCoolTime is invalid, the instructions assumes a value of zero and sets the
appropriate bit in Status.

Valid = 0.0 to MaxCoolTime

Default = 0.0

Output Parameter: Data Type:

Description:

EnableOut BOOL Enable output.

HeatOut BOOL Heating output pulse. The instruction pulses this output for the heating contact.

CoolOut BOOL Cooling output pulse. The instruction pulses this output for the cooling contact.

HeatTimePercent REAL Heating output pulse time in percent. This value is the calculated percent of the current cycle
that the HeatingOutput will be on. This allows you to use the instruction with an analog
output for heating if required. Arithmetic status flags are set for this output.

CoolTimePercent REAL Cooling output pulse time in percent. This value is the calculated percent of the current cycle
that the CoolingOutput will be on. This allows you to use the instruction with an analog
output for cooling if required. Arithmetic status flags are set for this output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

Publication 1756-RM006C-EN-P - June 2003

1-102

Output Parameter: Data Type: Description:

CycleTimelnv BOOL Invalid CycleTime value. The instruction uses zero.

(Status.1)

MaxHeatTimelnv BOOL Invalid MaxHeatTime value. The instruction uses the CycleTime value.
(Status.2)

MinHeatTimelnv BOOL Invalid MinHeatTime value. The instruction uses zero.

(Status.3)

MaxCoolTimelnv BOOL Invalid MaxCoolTime value. The instruction uses the CycleTime value.
(Status.4)

MinCoolTimelnv BOOL Invalid MinCoolTime value. The instruction uses zero.

(Status.5)

HeatSpaninv BOOL MaxHeatln = MinHeatln.

(Status.6)

CoolSpaninv (Status.7) BOOL MaxCoolln = MinCoolIn.

Publication 1756-RM006C-EN-P - June 2003

Description: The length of the SRTP pulse is proportional to the PID output. The

instruction parameters accommodate heating and cooling applications.

Using the internal cycle timer

The instruction maintains a free running cycle timer that cycles from zero to
the programmed CycleTime. The internal timer is updated by DeltaT. DeltaT
is the elapsed time since the instruction last executed. This timer determines if
the outputs need to be turned on.

You can change CycleTime at any time. If CycleTime = 0, the internal timer is
cleared and HeatOut and CoolOut ate cleared.

Calculating heat and cool times

Heat and cool times are calculated every time the instruction is executed.

HeatTime is the amount of time within CycleTime that the heat output is to be
turned on.

In—MinHeatln
HeatTi = CycleTi
catiime MaxHeatIn —MinHeatIn x Lyclelime

o If HeatTime < MinHeatTime, set HeatTime = 0.
o If HeatTime> MaxHeatTime, limit HeatTime = MaxHeatTime.

1-103

HeatTimePercent is the percentage of CycleTime the HeatOut is set.

HeatTimePercent = HeatTime x 100

CycleTime

CoolTime is the amount of time within CycleTime that the cool output is to be
turned on.

In—MinCoolln

CoolTime = MaxCoolln —MinCoolln x CycleTime

e If CoolTime < MinCoolTime, set CoolTime = 0.
e If CoolTime > MaxCoolTime, limit CoolTime = MaxCoolTime.

CoolTimePercent is the percentage of CycleTime CoolOut is set.

CoolTimePercent = M x 100
CycleTime

The instruction controls heat and cool outputs using these rules:

e Set HeatOut if HeatTime 2 the internal cycle time accumulator. Clear
HeatOut when the internal cycle timer > HeatTime.

e Set CoolOut if CoolTime = the internal cycle time accumulator. Clear
CoolOut if the internal cycle timer > CoolTime.

e Clear HeatOut and CoolOut if CycleTime = 0.

Arithmetic Status Flags: Arithmetic status flags are set for the HeatTimePercent and CoolTimePercent

Fault Conditions:

outputs.

none

Publication 1756-RM006C-EN-P - June 2003

1-104

Execution:
Condition: Function Block Action: Structured Text Action:
prescan HeatOut and CoolOut are cleared. HeatOut and CoolOut are cleared.
instruction first scan The internal cycle timer is reset. The internal cycle timer is reset.
instruction first run No action taken. No action taken.
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.
Enableln is set The instruction executes. Enableln is always set.

EnableOut is set. he instruction executes.
postscan No action taken. No action taken.

Example:

place the PIDE instruction in a slow,
lower priority task

place the SRTP instruction in a faster,
higher-priority task

Publication 1756-RM006C-EN-P - June 2003

In this example, the PIDE instruction executes in a slow, lower priority task
because it is a slow, temperature loop. The output of the PIDE instruction is a
controller-scoped tag because it becomes the input to an SRTP instruction.
The SRTP instruction executes in a faster, higher priority task so that the pulse
outputs are more accurate.

Structured Text

BarrelTempLoop.PV := BarrelTemp;
PIDE (BarrelTempLoop) ;
LoopOutput := BarrelTempLoop.CVEU;

SRTP_02.In := LoopOutput;
SRTP (SRTP_02) ;
ResistiveHeater := SRTP 02.HeatOut;

CoolingSolenoid SRTP_02.CoolOut;

1-105

Function Block

place the PIDE instruction in a slow,
lower priority task

BarelTempLoop

0.0
Barre|Temp [

O
0
O
=
0
O
]
=]
=]
]
=]
]
=]

place the SRTP instruction in a faster,
higher-priority task

uln]
LoopQutput [,

In

Split Range Time Proportional

o
—
o

HeatOut
CoolOut

HeatTimePercent

CoolTimePercent

— —
on

|
oo
]

FIDE _|
Enhanced FID
oo
P CWEL (] LoopOutput
0.0
SFFrog SF O
u]
SFPCascade PWYHHAlarm 30
FatiaProg FWHALarm IlD
CWFrog PYLAlam [0
u]
FF PwLLAlarm [
u]
HandFB FWROCFasAlarm [0
u]
FrogFrogReq FWROCHegAlarm 30
| ProgQperReaq CrevHHAlLarm IlD
| FrogCasRatReq LrevHAlarm [0
u]
| ProgautoReq Devlalarm [0
u]
| FroghlanualReq LevlLAlarm [
u]
| FrogQwerideReq FrogQOper 30
=| FrogHandReq CazRat IlD
Futo [0
u]
Manual [§
u]
Chrerride [0
u]
Hand [0
AutotuneTag T
SRTP_DZ
SRTP

=] ResistiveHe ater
CoolingSolenaid

Publication 1756-RM006C-EN-P - June 2003

1-106

Totalizer (TOT) The TOT instruction provides a time-scaled accumulation of an analog input
value.
Operands:
TOT (TOT_tag) ; Structured Text
Operand: Type: Format: Description:
TOT tag TOTALIZER structure TOT structure
P —_— Function Block
TOT EI
T talizar Operand: Type: Format: Description:
dn Total o TOT tag TOTALIZER structure TOT structure
=] FrogProgReq OldTotal &5
=] ProgOperReq FrogQOper 5
] ProgStartReq RunStop [
=] ProgStopReq ProgResethone [
=] FrogResetRaq TargetFlag @
TargetheviFlag [
TargetlevzFlag @
TOTALIZER Structure
Input Parameter: Data Type: Description:;
Enableln BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0
InFault BOOL Bad health indicator of In. If set, it indicates that the input signal has an error, the instruction
sets the appropriate bit in Status, the control algorithm is not executed, and Total is
not updated.

Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-107

Input Parameter: Data Type: Description:

TimeBase DINT The timebase input. The time base of the totalization based on the In engineering units.
Value: Description:
0 seconds
1 minutes
2 hours
3 days
For example, use TimeBase = minutes if In has units of gal/min. If this value is invalid, the
instruction sets the appropriate bit in Status and does not update the Total.
For more information about timing modes, see appendix Function Block Attributes.
Valid=0to 3
Default=0

Gain REAL The multiplier of the incremental totalized value. The user can use the Gain to convert the
units of totalization. For example, use the Gain to convert gal/min to a total in barrels.
Valid = any float
Default = 1.0

ResetValue REAL The reset value input. The reset value of Total when OperResetReq or ProgResetReq
transitions from cleared to set.
Valid = any float
Default = 0.0

Target REAL The target value for the totalized In.
Valid = any float
Default =0.0

TargetDevl REAL The large deviation pre-target value of the Total compared to the Target. This value is
expressed as a deviation from the Target.
Valid = any float
Default = 0.0

TargetDev2 REAL The small deviation pre-target value of the Total compared to the Target. This value is
expressed as a deviation from the Target.
Valid = any float
Default =0.0

LowlInCutoff REAL The instruction low input cutoff input. When the In is at or below the LowInCutoff value,
totalization ceases.
Valid = any float
Default =0.0

ProgProgReq BOOL Program program request. Set to request Program control. Ignored if ProgOperReq is set.
Holding this set and ProgOperReq cleared locks the instruction in Program control.
Default is cleared.

ProgOperReq BOOL Program operator request. Set to request Operator control. Holding this set locks the
instruction in Operator control.
Default is cleared.

ProgStartReq BOOL The program start request input. Set to request totalization to start.
Default is cleared.

ProgStopReq BOOL The program stop request input. Set to request totalization to stop.
Default is cleared.

ProgResetReq BOOL The program reset request input. Set to request the Total to reset to the ResetValue.
Default is cleared.

OperProgReq BOOL Operator program request. Set by the operator interface to request Program control. The

instruction clears this input.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

1-108

Input Parameter: Data Type: Description:

OperOperReq BOOL Operator operator request. Set by the operator interface to request Operator control. The
instruction clears this input.

Default is cleared.

OperStartReq BOOL The operator start request input. Set by the operator interface to request totalization to start.
The instruction clears this input.

Default is cleared.

OperStopReq BOOL The operator stop request input. Set by the operator interface to request totalization to stop.
The instruction clears this input.

Default is cleared.

OperResetReq BOOL The operator reset request input. Set by the operator interface to request totalization to
reset. The instruction clears this input.
Default is cleared.

ProgValueReset BOOL Reset program control values. When set, clear all the program request inputs each execution
of the instruction.

Default is cleared.
TimingMode DINT Selects timing execution mode.
Value; Description;
0 periodic mode
1 oversample mode
2 real time sampling mode
For more information about timing modes, see appendix Function Block Attributes.
Valid=0to 2
Default =0
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0

RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default = 1

RTSTimeStamp DINT Module time stamp value for real time sampling mode.

Valid = 0 to 32,767ms
Default =0

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Total REAL The totalized value if In. Arithmetic status flags are set for this output.

OldTotal REAL The value of the total before a reset occurred. You can monitor this value to read the exact
total just before the last reset.

ProgOper BOOL Program/operator control indicator. Set when in Program control. Cleared when in
Operator control.

RunStop BOOL The indicator of the operational state of the totalizer. Set when the TOT instruction is
running. Cleared when the TOT instruction is stopped.

ProgResetDone BOOL The indicator that the TOT instruction has completed a program reset request. Set when the
instruction resets as a result of ProgResetReq. You can monitor this to determine that a reset
successfully completed. Cleared when ProgResetReq is cleared.

TargetFlag BOOL The flag for Total. Set when Total > Target.

Publication 1756-RM006C-EN-P - June 2003

1-109

Output Parameter: Data Type: Description:

TargetDev1Flag BOOL The flag for TargetDevl. Set when Total > Target - TargetDev1.

TargetDev2Flag BOOL The flag for TargetDev2. Set when Total > Target - TargetDev?2.

LowlInCutoffFlag BOOL The instruction low input cutoff flag output. Set when In < LowInCutoff.

DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

InFaulted (Status.1) BOOL In value faulted.

TimeBaselnv (Status.2) BOOL Invalid TimeBase value.

TimingModelnv BOOL Invalid TimingMode value.

(Status.27)

RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).

RTSTimelnv BOOL Invalid RTSTime value.

(Status.29)

RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.

(Status.30)

DeltaTinv (Status.31) ~ BOOL Invalid DeltaT value. This can occur if OversampleDT is invalid in oversample timing mode.

Description: This instruction typically totals the amount of a material added over time,

based on a flow signal.
The TOT instruction supports:

e Time base selectable as seconds, minutes, hours, or days.

® You can specify a target value and up to two pre-target values. Pre-target
values are typically used to switch to a slower feed rate. Digital flags
announce the reaching of the target or pre-target values.

e A low flow input cutoff that you can use to eliminate negative
totalization due to slight flowmeter calibration inaccuracies when the
tflow is shut off.

e Operator ot program capability to start/stop/reset.

e A user defined reset value.

e Trapezoidal-rule numerical integration to improve accuracy.

e The internal totalization is done with double precision math to improve
accuracy.

Publication 1756-RM006C-EN-P - June 2003

1-110

Arithmetic Status Flags:

Fault Conditions:

Monitoring the TOT instruction

There is an operator faceplate available for the TOT instruction. For more
information, see appendix Function Block Faceplate Controls.

Arithmetic status flags are set for the Total output.

none
Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan All operator request inputs are cleared.

If ProgValueReset is set, then all program request inputs are cleared.

instruction first run The instruction i
Total = ResetVal
OldTotal = 0.0.
ProgOper is clea

nitializes the internal parameters.
ue.

red.

Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs

are not updated.

Enableln is set The instruction executes. Enableln is always set.

EnableQut is set

. he instruction executes.

postscan No action taken.

No action taken.

Example:

Publication 1756-RM006C-EN-P - June 2003

In this example, the TOT instruction meters a target quantity of water into a
tank and shuts off the flow once the proper amount of water has been added.
When the AddWater pushbutton is pressed, the TOT instruction resets and
starts totalizing the amount of water flowing into the tank. Once the Target
value is reached, the TOT instruction sets the TargetFlag output, which causes
the solenoid valve to close. For this example, the TOT instruction was
“locked” into Program Run by setting the ProgProgReq and ProgStarfReq inputs.
This is done for this example because the operator never needs to directly
control the TOT instruction.

1-111

Structured Text

TotalWaterFlow.In := WaterFlowRate;
TotalWaterFlow.ProgProgReq := 1;
TotalWaterFlow.ProgStartReqg := 1;
TotalWaterFlow.ProgResetReq := AddWater;
TOT (TotalWaterFlow) ;
RESD 0l.Set := AddWater;
RESD 0Ol.Reset := TotalWaterFlow.TargetFlag;
RESD (RESD 01) ;
WaterSolenoidvValve := RESD 01.0ut;
Function Block
[Ratr g — — — — — — — — — — — — |
| TotalifaterF Lo | RESD_0O1
| TOT D | RESLD D
| Totalizer | Rezet Dominant
In Total o |- — —F] Set Out [f— —E|< WaterSolenoidWalve
. {=] FragFrogReq OldTotal O |— —— —F] Reset OutHot 5
| | 5 ProgOperReag FrogQper [
| | FragStartReq RunStep @ |
| = FrogStopReqg FrogResethone [|
— —— —— —] FrogResetReg TargetFlag ZI—I
TargethewlFlag [
TargethevZFlag [0

Check for low input cutoff

If (In € LowInCutoff), the instruction sets LowInCutoffFlag and makes In ,_;

= 0.0. Otherwise, the instruction clears LowInCutoftFlag.

When the LowInCutoffFlag is set, the operation mode is determined, but

totalization ceases. When LowInCutoffFlag is cleared, totalization continues

that scan.

Publication 1756-RM006C-EN-P - June 2003

1-112

Operating modes

The following diagram shows how the TOT instruction changes between
Program control and Operator control.

(\ OperOperReq is set when ProgProgReq is cleared (\

ProgOperReq is set

vy

Program Control Operator Control

ProgProgReq is set when ProgOperReq is cleared

OperProgReq is set when ProgOperReq and OperOperReq
are cleared

. /=
(1) The instruction remains in operator control mode when ProgOperReq is set.

The following diagram shows how the TOT instruction changes between Run
and Stop modes.

ProgOper is cleared and OperStartReq is setd)

|
ProgOper and ProgStartReq are set
|
Stop Run
RunStop is cleared RunStop is set
ProgOper and ProgStopReq are set
g
ProgOper is cleared and OperStopReq is set
-

InFault is set
N/ \ /

(1) The stop requests take precedence over start requests.

(2) The first scan in run after a stop, the totalization is not evaluated, but In,,_; is updated. During the next scan,
totalization resumes.

All operator request inputs are cleared at the end of each scan. If

ProgValueReset is set, all program request inputs are cleared at the end of each
scan.

Publication 1756-RM006C-EN-P - June 2003

1-113

Resetting the TOT instruction

When ProgResetReq transitions to set while ProgOper is set, the following
happens:

e OldTotal = Total
e Total = ResetValue

® ProgResetDone is set

If ProgResetReq is cleared and ProgResetDone is set then ProgResetDone is
cleared

When OperResetReq transitions to set while ProgOper is cleared, the
following happens:

e OldTotal = Total
e Total = ResetValue

Calculating the totalization

When RunStop is set and LowInCutoffFlag is cleared, the following equation
performs the totalization calculation.

DeltaT

= + Gain x 5————
Totaln Totaln_l Gain x 2 x TimeBase

xUn,+1In,_,)

where TimeBase is:

Value: Condition:

1 TimeBase = 0 (seconds)
60 TimeBase = 1 (minutes)
3600 TimeBase = 2 (hours)
86400 TimeBase = 3 (days)

Determining if target values have been reached

Once the totalization has been calculated, these rules determine whether the
target or pre-target values have been reached:

e TargetFlag is set when Total > Target
e TargetDev1Flag is set when Total > (Target - TargetDev1)
e TargetDev2Flag is set when Total = (Target - TargetDev2)

Publication 1756-RM006C-EN-P - June 2003

1-114

Notes:

Publication 1756-RM006C-EN-P - June 2003

Chapter 2

Drives Instructions
(INTG, PI, PMUL, SCRV, SOC, UPDN)

Introduction These drives instructions atre available:
If you want to: Use this instruction: Available in these languages: See page:
execute a integral operation. Integrator (INTG) structured text 2-2
function block
execute a Pl algorithm. Proportional + Integral (PI) structured text 2-8
function block
provide an interface from a position input Pulse Multiplier (PMUL) structured text 2-20
module, such as a resolver or encoder feedback function block

module, to the digital system by computing the
change in input from one scan to the next.

perform a ramp function with an added S-Curve (SCRV) structured text 2-28
jerk rate. function block
use a gain term, a first order lag, and a second ~ Second-Order Controller structured text 2-38
order lead. (SoC) function block
add and subtract two inputs into an Up/Down Accumulator structured text 2-46
accumulated value. (UPDN) function block

Publication 1756-RM006C-EN-P - June 2003

2-2 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Integrator (INTG)

Operands:

INTG (INTG_tag) ;

ba

The INTG instruction implements an integral operation. This instruction is
designed to execute in a task where the scan rate remains constant.

Structured Text

Operand: Type: Format: Description:

INTG tag INTEGRATOR structure INTG structure

Function Block

INT&_01
INTZ |Z| —
Operand: Type: Format: Description:
Integratar
INTG tag INTEGRATOR structure INTG structure
olIn Out O
INTEGRATOR Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0
Initialize BOOL Request to initialize control algorithm. Output = InitialValue as long as Initialize is set.
Valid = any float
Default=0.0
InitialValue REAL The initial value for instruction. Output = InitialValue as long as Initialize is set.
Valid = any float
Default = 0.0
IGain REAL The integral gain multiplier. If IGain < 0; the instruction sets IGain = 0.0, sets the appropriate
bit in Status, and leaves the Output unchanged.
Valid = 0.0 to maximum positive float
Default=0.0
HighLimit REAL The high limit value for Out. If HighLimit < LowLimit, the instruction sets HighAlarm and
LowAlarm, sets the appropriate bit in Status, and sets Out = LowLimit.
Valid = any float
Default = maximum positive float
LowLimit REAL The low limit value for Out. If HighLimit < LowLimit, the instruction sets HighAlarm and

LowAlarm, sets the appropriate bit in Status, and sets Out = LowLimit.
Valid = any float
Default = maximum negative float

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRY, SOC, UPDN) ~ 2-3

Input Parameter: Data Type: Description:
HoldHigh BOOL Hold output high request. When set, Out is not allowed to increase in value.
Default is cleared.
HoldLow BOOL Hold output low request. When set, Out is not allowed to decrease in value.
Default is cleared.
TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode
For more information about timing modes, see appendix Function Block Attributes.
Valid=0to 2
Default =0
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default=0
RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default = 1
RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default=0
Output Parameter: Data Type: Description:
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
HighAlarm BOOL High limit alarm indicator. When Out > HighLimit, HighAlarm is set and the output is limited
to the value of HighLimit.
LowAlarm BOOL Low limit alarm indicator. When Out < LowLimit, LowAlarm is set and the output is limited to
the value of LowLimit.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.
Status DINT Status of the function block.
InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.
IGainlnv (Status.1) BOOL IGain > maximum or IGain < minimum.
HighLowLimsInv BOOL HighLimit < LowLimit.
(Status.2)
TimingModelnv BOOL Invalid TimingMode value.
(Status.27) For more information about timing modes, see appendix Function Block Attributes.

RTSMissed (Status.28) BOOL

Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).

Publication 1756-RM006C-EN-P - June 2003

2-4 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Output Parameter: Data Type: Description:

RTSTimelnv BOOL Invalid RTSTime value.
(Status.29)

RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.
(Status.30)

DeltaTlnv (Status.31) BOOL Invalid DeltaT value.

Description: The INTG instruction is designed to execute in a task where the scan rate
remains constant.

The INTG instruction executes this control algorithm when Initialize is
cleared and DeltaT > 0.

In+In, _

Out = IGain x L DeltaT + Out, _,

Whenever the value computed for the output is invalid, NAN, or £INF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. The internal parameters are not updated. In each subsequent scan, the
output is computed using the internal parameters from the last scan when the
output was valid.

Limiting

The INTG instruction performs windup limiting to stop Out from changing
based on the state of the HoldHigh and HoldLow inputs. If HoldHigh is set
and Out > Out, ¢ then Out = Out,, ;. If HoldLow is set and Out < Out,, 4,

then Out = Out, 4.

The INTG instruction also performs output limiting using HighLLimit and
LowLimit. If Out =2 HighLimit, then Out = HighLimit and HighAlarm is set.
If Out < LowLimit, then Out = LowLimit and LowAlarm is set.

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:

Condition: Function Block Action: Structured Text Action:

prescan No action taken. No action taken.

instruction first scan The internal parameters and Out are set to 0. The internal parameters and Out are set to 0.
The control algorithm is not executed. The control algorithm is not executed.

instruction first run The internal parameters and Out are set 0. The internal parameters and Out are set 0.
The control algorithm is not executed. The control algorithm is not executed.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-5

Condition:

Function Block Action: Structured Text Action:

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.

Enableln is set The instruction executes. Enableln is always set.
EnableOut is set. The instruction executes.
postscan No action taken. No action taken.
Example: In many applications an integral gain component is included in the closed loop

regulator design in order to eliminate or minimize error in the system being
regulated. A straight proportional-only regulator will not tend to drive error in
the system to zero. A regulator that uses proportional and integral gain,
however, tends to drive the error signal to zero over a petiod of time. The
INTG instruction uses the following equation to calculate its output.

In+1In, _

Out = IGain x L DeltaT + Out, _,

In this chart, the input to the block moves from 0 to +200 units. During this
period, the output of the block integrates to 2800 units. As In changes from
+200 units to 0 units, Out maintains at 2800 units. When In transitions from 0
to =300 units, Out slowly integrates down to —1400 units until In transitions
back to 0. As In moves from 0 to +100, Out integrates back to 0 where In is
set to 0 coincidentally with Out reaching 0.

This characteristic of the integrator — continually driving in a specific direction
while any input to the function is present or holding at any level during the
point where the input is at zero — is what causes a regulator using integral gain
to drive toward zero error over a period of time.

The following example shows how the INTG instruction can be used in an
application. In many instances, the HighLimit and LowLimit inputs limit the
total percentage of control that the integral gain element might have as a
function of the regulator’s total output. The HoldHigh and HoldLow inputs,
on the other hand, can be used to prevent the output from moving further in
either the positive or negative direction. In this example, if the regulator output
is already saturated at 100%, the HoldHigh and HoldLow inputs prevent the

Publication 1756-RM006C-EN-P - June 2003

2-6 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

INTG instruction from “winding-up” in a direction which is already beyond
the limits of the controlled variable.

Structured Text

INTG 01.IN := Dancer Loop Error;

INTG 0l.Initialize := Initialize Integrator;
INTG 0l.InitialValue := Int Init Val;

INTG _0l1.IGain := I Gain;

INTG Ol.HighLimit := Int saturate high;

INTG Ol.LowLimit := Int saturate_ low;

INTG 01.HoldHigh

ALM Ol.HAlarm;
INTG 0Ol.HoldLow := ALM Ol.LAlarm;
INTG (INTG 01);

regulator out := (Dancer Loop Error*Proportional Gain)
+ INTG _01.0ut;

ALM 0l1.In := regulator out;
ALM 01.HLimit := 100;
ALM 01.LLimit := -100;

ALM(ALM 01);

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

2-7

Dancer_Loop_Error

Initialize_Integrator [

o

Function Block

Int_lnit_wal

Int_saturate_high [t

Int_saturate_low

] LowLimit
|—)3E HaldHigh
5 HoldLow

MUL_04
wuL [
hultiply
i Dest
Froportional_&ain Ct SourceB
INTG_01
INTG EI
Integrator
1 In Out
|-——————————Elnitialize
] Initial'Yalue
] I ain
] HighLimit

ADD_04
ADD El
Add
L M Sourced Dest | regulator_out
————— | Sounceb
ALM_01
ALk EI
100 O Alarm
1 In Héalamm 53—
HLimit Ladarm [5 | |
-100 [LLimit | |

Publication 1756-RM006C-EN-P - June 2003

2-8 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Proportional + Integral (PI)

Operands:

PI(PI tag);

Fl_0O4

Fl

Fl

The PI instruction provides two methods of operation. The first method
follows the conventional PI algorithm in that the proportional and integral
gains remain constant over the range of the input signal (error). The second
method uses a non-linear algorithm where the proportional and integral gains
vary over the range of the input signal. The input signal is the deviation
between the setpoint and feedback of the process.

Structured Text

Operand: Type: Format: Description:

Pl tag PROP_INT structure PI structure

Function Block

Operand: Type: Format: Description:

Pl tag PROP_INT structure PI structure

PROP_INT Structure

Input Parameter:

Data Type:

Description:

Enableln

BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

REAL

The process error signal input. This is the difference between setpoint and feedback.
Valid = any float
Default = 0.0

Initialize

BOOL

The instruction initialization command. When set, Out and internal integrator are set equal to
the value of InitialValue.
Default is cleared.

InitialValue

REAL

The initial value input. When Initialize is set, Out and integrator are set to the value of
InitialValue. The value of InitialValue is limited using HighLimit and LowLimit.

Valid = any float

Default =0

Kp

REAL

The proportional gain. This affects the calculated value for both the proportional and integral
control algorithms. If invalid, the instruction clamps Kp at the limits and sets the appropriate
bit in Status.

Valid = any float > 0.0

Default = minimum positive float

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRY, SOC, UPDN) 2-9

Input Parameter: Data Type: Description:

Wid REAL The lead frequency in radians/second. This affects the calculated value of the integral
control algorithm. If invalid, the instruction clamps WId at the limits and sets the appropriate
bit in Status.

Valid = see the Description section below for valid ranges
Default = 0.0

HighLimit REAL The high limit value. This is the maximum value for Out. If HighLimit < LowLimit, the
instruction sets HighAlarm and LowAlarm, sets the appropriate bit in Status, and sets
Out = LowLimit.

Valid = LowLimit < HighLimit < maximum positive float
Default = maximum positive float

LowLimit REAL The low limit value. This is the minimum value for Out. If HighLimit < LowLimit, the
instruction sets HighAlarm and LowAlarm, sets the appropriate bit in Status, and sets
Out = LowLimit.

Valid = maximum negative float < LowLimit < HighLimit
Default = maximum negative float

HoldHigh BOOL The hold high command. When set, the value of the internal integrator is not allowed to
increase in value.
Default is cleared.

HoldLow BOOL The hold low command. When set, the value of the internal integrator is not allowed to
decrease in value.
Default is cleared.

ShapeKpPlus REAL The positive Kp shaping gain multiplier. Used when In is > 0. If invalid, the instruction clamps
ShapeKpPlus at the limits and sets the appropriate bit in Status. Not used when
NonLinearMode is cleared.

Valid =0.1t0 10.0
Default =1.0

ShapeKpMinus REAL The negative Kp shaping gain multiplier. Used when In is < 0. If invalid, the instruction
clamps ShapeKpMinus at the limits and sets the appropriate bit in Status. Not used when
NonLinearMode is cleared.

Valid =0.1t0 10.0
Default = 1.0

KpInRange REAL The proportional gain shaping range. Defines the range of In (error) over which the
proportional gain increases or decreases as a function of the ratio of | In | / KplnRange. When
| In| > KpInRange, the instruction calculates the change in proportional error using entered
the Kp shaping gain x (In - KpInRange). If invalid, the instruction clamps KpInRange at the
limits and sets the appropriate bit in Status. Not used when NonLinearMode is cleared.
Valid = any float > 0.0
Default = maximum positive float

ShapeWIdPlus REAL The positive WId shaping gain multiplier. Used when In is > 0. If invalid, the instruction
clamps ShapeW!IdPlus at the limits and sets the appropriate bit in Status. Not used when
NonLinearMode is cleared.

Valid = 0.0 t0 10.0
Default = 1.0
ShapeWIdMinus REAL The negative WId shaping gain multiplier. Used when In is < 0. If invalid, the instruction

clamps ShapeWIdMinus at the limits and sets the appropriate bit in Status. Not used when
NonLinearMode is cleared.

Valid = 0.0 to 10.0

Default = 1.0

Publication 1756-RM006C-EN-P - June 2003

2-10 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Input Parameter: Data Type: Description:

WIdInRange REAL The integral gain shaping range. Defines the range of In (error) over which integral gain
increases or decreases as a function of the ratio of | In | / WldInRange. When
[In] > WidInRange, the instruction limits In to WIdInRange when calculating integral error. If
invalid, the instruction clamps WIdInRange at the limits and sets the appropriate bit in
Status. Not used when NonLinearMode is cleared.
Valid = any float > 0.0
Default = maximum positive float

NonLinearMode BOOL Enable the non-linear gain mode. When set, the instruction uses the non-linear gain mode
selected by ParabolicLinear to compute the actual proportional and integral gains. When
cleared, the instruction disables the non-linear gain mode and uses the Kp and Wld values as
the proportional and integral gains.

Default is cleared.

ParabolicLinear BOOL Selects the non-linear gain mode. The modes are linear or parabolic. When set, the

instruction uses the parabolic gain method of y =a * ¥ + b to calculate the actual
proportional and integral gains. If cleared, the instruction uses the linear gain method of
y=a*x+h

Default is cleared.

TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode

For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default =0
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0
RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default =1
RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default =0
Output Parameter: Data Type: Description:
EnableOut BOOL Enable output.
Out REAL The calculated output of the Pl algorithm. Arithmetic status flags are set for this output.
HighAlarm BOOL The maximum limit alarm indicator. Set when the calculated value for Out > HighLimit and
the output and integrator are clamped at HighLimit.
LowAlarm BOOL The minimum limit alarm indicator. Set when the calculated value for Out < LowLimit and
output and integrator are clamped at LowLimit.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.
Status DINT Status of the function block.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) 2-11

Output Parameter: Data Type: Description:
InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.
Kplnv (Status.1) BOOL Kp < minimum or Kp > maximum.
WidInv (Status.2) BOOL WId < minimum or WId > maximum.
HighLowLimsInv BOOL HighLimit < LowLimit.
(Status.3)
ShapeKpPlusinv BOOL ShapeKpPlus < minimum or ShapeKpPlus > maximum.
(Status.4)
ShapeKpMinusinv BOOL ShapeKpMinus < minimum or ShapeKpMinus > maximum.
(Status.5)
KpInRangelnv BOOL KpInRange < minimum or KplnRange > maximum.
(Status.6)
ShapeWIdPlusinv BOOL ShapeWIdPlus < minimum or ShapeWIdPlus > maximum.
(Status.?)
ShapeWIdMinusinv BOOL ShapeWIdMinus < minimum or ShapeWIdMinus > maximum.
(Status.8)
WIdInRangelnv BOOL WIdInRange < minimum or WidInRange > maximum.
(Status.9)
TimingModelnv BOOL Invalid timing mode.
(Status.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.
(Status.29)
RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.
(Status.30)
DeltaT (Status.31) BOOL Invalid DeltaT value.
Description: The PI instruction uses the position form of the PI algorithm. This means the

gain terms are applied directly to the input signal, rather than to the change in
the input signal. The PI instruction is designed to execute in a task where the
scan rate remains constant.

In the non-linear algorithm, the proportional and integral gains vary as the
magnitude of the input signal changes. The PI instruction supports two
non-linear gain modes: linear and parabolic. In the linear algorithm, the gains
vary linearly as the magnitude of input changes. In the parabolic algorithm, the
gains vary according to a parabolic curve as the magnitude of input changes.

The PI instruction calculates Out using this equation:

s+ Wlid
X——————

K
P s

Publication 1756-RM006C-EN-P - June 2003

2-12 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Publication 1756-RM006C-EN-P - June 2003

Whenever the value computed for the output is invalid, NAN, or ZINF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. The internal parameters are not updated. In each subsequent scan, the
output is computed using the internal parameters from the last scan when the
output was valid.

Operating in linear mode

In linear mode, the non-linear gain mode is disabled. The Kp and Wid values
are the proportional and integral gains used by the instruction. The instruction
calculates the value for Out using these equations:

Value: Equation:

ITerm
WlidInput + WidInput

Kp x Wld x 3

n-l x DeltaT + ITerm,, _,

where DeltaT is in seconds

PTerm
Kp x In

Out

ITerm + PTerm

with these limits on WId:

LowLimit > 0.0

0.7%
DeltaT
WidInput = In

HighLimit =

Operating in non-linear mode

In non-linear mode, the instruction uses the non-linear gain mode selected by
ParabolicLinear to compute the actual proportional and integral gains.

The gains specified by Kp and Wld are multiplied by 1.0 when In = 0. Separate
proportional and integral algorithms increase or dectrease the proportional or
integral gain as the magnitude of error changes. These algorithms use the input
range and shaping gain parameters to compute the actual proportional and
integral gains. Input range defines the range of In (i.e. error) over which the
gain is shaped. Input ranges are set by the two KpInRange and WldInRange.
Shaping gain defines the gain multiplier for the quadrant controlled by the
shaping gain parameter. Shaping gains are set by ShapeKpPlus,
ShapeKpMinus, ShapeWldPlus and ShapeWldMinus.

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-13

parabolic

/ShapeMuItipIier ShapeMultiplier - R

linear

The ParabolicLinear input selects the non-linear gain mode. If ParabolicLinear
is cleared, linear mode is selected. If ParabolicLinear is set, parabolic mode is
selected.

To configure a particular shaping gain curve, enter a shaping gain 0.0-10.0 for
integral shaping, a shaping gain 0.1-10.0 for proportional shaping, and the
input range over which shaping is to be applied. Kp and Wld are multiplied by
the calculated ShapeMultiplier to obtain the actual proportional and integral
gains. Entering a shaping gain of 1.0 disables the non-linear algorithm that
calculates the proportional or integral gain for the quadrant.

When the magnitude of In (error) is greater then InRange then the
ShapeMultiplier equals the value computed when | In | was equal to InRange.

The following diagram illustrates the maximum and minimum gain curves that
represent the parabolic and linear gain equations.

ShapeGain
ShapeMinus A ShapePlus

linear

parabolic

InputRange
Xx=-—1

\

InputRange
x=1

Publication 1756-RM006C-EN-P - June 2003

2-14 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

The instruction calculates the value for Out using these equations:

Value:

Equations:

Kp shaping gain multiplier

If In > 0 then:
KpShapeGain = ShapeKpPlus
KpRange = KpInRange

Else:
KpShapeGain = ShapeKpMinus
KpRange = —KpInRange

Kp input ratio

If |In|] < KpInRange:

KpInputRatio = |In| x L

KpInRange
Else:
KpInputRatio = 1
Kp ratio If not parabolic mode:
KpRatio = KpInputRatio x 0.5
If parabolic mode:
KpRatio = Kp]npul‘Ralio2 x 0.333
Kps shaping gain

Kps = Kp x (KpShapeGain—1) x KpRatio) + 1)

Proportional output

If |In| < KpInRange:
PTerm = Kps xIn

Else, limit gain:

PTerm = Kps x KpRange + (In—KpRange) x KpShape

WId shaping gain If In> 0 then:
WlidShapeGain = ShapeWIdPlus
Else:
WidShapeGain = ShapeWldMinus
WId input If In > WIdRange then:

WlidInput = WldInRange
Else if In <-WIdInRange then:

WlidInput = —WldInRange
Else:
WlidInput = In

WId input ratio

If |In] < WIldInRange:

1

[R = | —_—
WidInputRange = |In| x WidinRange

Else:
WlidInputRange = 1

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-15

Value: Equations:
WId ratio If not parabolic mode:

WlidRatio = WldInputRatio

If parabolic mode:

WldRatio = Wld[nputRati02
WIds shaping gain

Wids = Wid x (WldShapeGain—1) x WldRatio) + 1)
WIds limits

LowLimit>0

0.71

HighLimit =
gkt DeltaT

Integral output

(WidInput + WidInput, _,)
2

ITerm = Kps x Wlds x x DeltaT + ITerm,, _,

Output

Out = PTerm + [Term

Limiting

The instruction stops the ITerm windup based on the state of the hold inputs.

Condition: Action:

If HoldHigh is set and [Term = ITerm,,¢
[Term > ITerm,, 4

If HoldLow is set and [Term = [Term,,¢
[Term < ITerm, 4

The instruction also stops integrator windup based on the HighLimit and
LowLimit values.

Condition: Action:
Integrator > HighLimit Integrator = HighLimit
Integrator < LowLimit Integrator = LowLimit

Publication 1756-RM006C-EN-P - June 2003

2-16 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

The instructions limits the value of Out based on the HighLimit and LowLimit

values.

Condition: Action:

HighLimit < LowLimit Out = LowLimit
[Term = LowLimit
HighLowLimslInv is set
HighAlarm is set
LowAlarm is set
Widinput =0

Out > HighLimit Out = HighLimit
[Term = [Term,, 4
HighAlarm is set

[Term > HighLimit ITerm = HighLimit

Out < LowLimit Out = LowLimit
[Term = [Term,, 4
LowAlarm is set

[Term < LowLimit [Term = LowLimit

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action;
prescan No action taken. No action taken.
instruction first scan Out=0 Out=0
The control algorithm is not executed. The control algorithm is not executed.
instruction first run Out=0 Out=0
The control algorithm is not executed. The control algorithm is not executed.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.

Enableln is set The instruction executes. Enableln is always set.
EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

Example: The PI instruction is a regulating instruction with proportional and integral
gain components. The integral gain component is set by the user in
radians/sec; this sets the basic frequency response of the PI regulator. The
proportional gain sets the overall gain of the block, including the proportional
AND integral gain of the block.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) 2-17

Excluding initialization and holding/clamping functionality, the following
diagram shows the PI block’s basic regulating loop while in the linear mode.

Pl Instruction: Linear Mode

Wmhmﬁmﬁwml %] DelaT é@ ITerm
d
 — *
L=]
Pl'enn o
L

The following example shows the PI instruction used as a velocity regulator. In
this example, velocity error is created by subtracting the velocity feedback
signal (see the PMUL instruction example) from the system’s velocity
reference (through the SCRV instruction). Velocity error is driven directly into
the PI instruction, which acts on this signal according to the function shown in
the diagram above.

Structured Text

Reference Select.Inl := Master Machine Ref;
Reference Select.Selectl := Master Machine Select;
Reference Select.In2 := Section Jog;

Reference Select.Select2 := Jog Select;

SSUM (Reference_ Select);

S Curve.In := Reference Select.Out;
S Curve.AccelRate := accel rate;
S _Curve.DecelRate := accel rate;

SCRV (S_Curve) ;

PMUL 01.In := Resolver Feedback;
PMUL 0l.WordSize := 12;
PMUL Ol1.Multiplier := 100000;

PMUL (PMUL 01) ;

Speed Feedback

PMUL 01.0ut;

Velocity Error := S Curve.Out - Speed Feedback;

Publication 1756-RM006C-EN-P - June 2003

2-18 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

PI 01.In := Velocity Error;

PI Ol.Initialize := Enable Regulator;
PI 0l1.Kp := Velocity Proportional Gain;
PI 01.Wld := Velocity Integral Gain;
PI(PI 01);

Torque Reference PI _01.0ut;

Function Block

Feference_Select
Master_Machine_Ref] Weloecity_Errar
SSUM l:l

E Selected Summer S_Curve suB_0z FPI_01
- aut SCRW El SUB El Fl El
Saloot! S-Cune Subtract Fl
In2 — In Out [— Sources Cest [H#— In Out l

- —i] Select?] AccelRate — SourceB — —— —] Initialize

|] DecelRate | kKp

| | wild
oo —

Enable_Regulatar O—

|‘Je|ocity_ProportionaI_Gain

FhilL_04
Welocity_Integral_Gain
FhUL EI
Fulze Multiplier
Resolwer_Feedback |, In Out [

- MordSize
00000 W hultipliar Speed_Feedback

In non-linear mode, the gains of the PI instruction can be shaped as a function
of the error being input to the block. This function allows for adaptive gain
control and can be used to model a regulator mechanism that more closely
matches the process being regulated. One example where this might be used is
in a catenary control application where the feedback coming back from a
sensor in a looping pit may not reflect a linear signal with respect to the
amount of material actually stored. Here, the proportional gains of the PI
regulator might be shaped to more closely model the process without using
integral components that might constantly “wind-up” and “wind_down.”

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-19

Pl Instruction: Non-Linear Mode

depth sensor

Publication 1756-RM006C-EN-P - June 2003

2-20 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Pulse Multiplier (PMUL)

Operands:

PMUL (PMUL_tag) ;

E FRUL_D4
PRUL]

Fulze Multiplier

dIn Out O

.

hdultiplier

The PMUL instruction provides an interface from a position input module,
such as a resolver or encoder feedback module, to the digital system by
computing the change in input from one scan to the next. By selecting a
specific word size, you configure the PMUL instruction to differentiate
through the rollover boundary in a continuous and linear fashion.

Structured Text

Operand: Type: Format: Description:

PMUL tag PULSE_MULTIPLIER structure PMUL structure

Function Block

Operand: Type: Format: Description:

PMUL tag PULSE_MULTIPLIER structure PMUL structure

PULSE_MULTIPLIER Structure

Input Parameter: Data Type:

Description:

Enableln BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

In DINT

The analog signal input to the instruction.
Valid = any DINT
Default =0

Initialize BOOL

The initialize input. When set, Out is held at 0.0 and all the internal registers are set to 0. On
a set-to-cleared transition, In,_; = InitialValue (not valid for Absolute mode). When cleared,
the instruction executes normally. The instruction ignores Initialize if WordSize is invalid.
Default is cleared.

InitialValue DINT

The initial value input. On a set-to-cleared transition of Initialize, In,,_; = InitialValue
Valid = any DINT
Default =0

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) 2-21

Input Parameter: Data Type: Description:

Mode BOOL The mode input. Set to enable Relative mode. Clear to enable Absolute mode.
Default is set.

WordSize DINT The word size in bits. Specify the number of bits to use when computing (In,, - In,.¢) in
Relative mode. WordSize is not used in Absolute mode. When the change in In is greater
than 1/2 x 2WWordsize - 1) oyt changes sign. When WordSize is invalid, Out is held and the
instruction sets the appropriate bit in Status.

Valid = 2 to 32
Default = 14

Multiplier DINT The multiplier. Divide this value by 100,000 to control the ratio of In to Out. If invalid, the
instruction limits the value and sets the appropriate bit in Status.
Valid = -1,000,000 to 1,000,000
Default = 100,000

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The instruction’s Out. If the Out calculation overflows, Out is forced to */- co and the
appropriate bit in Status is set. Arithmetic status flags are set for this output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

WordSizelnv (Status.1) BOOL Invalid WordSize value.

OutOverflow (Status.2) BOOL The internal output calculation overflowed.

LostPrecision BOOL Out < —2%* or Out > 224, When the instruction converts Out from an integer to a real value,

(Status.3) data is lost if the result is greater than |224| because the REAL data type is limited to 224,

Multiplierinv BOOL Invalid Multiplier value.

(Status.4)

Publication 1756-RM006C-EN-P - June 2003

2-22 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Description: The PMUL instruction operates in Relative or Absolute mode.

In Relative mode, the instruction’s output is the differentiation of the input
from scan to scan, multiplied by the (Multiplier/100,000). In Relative mode,
the instruction saves any remainder after the divide operation in a scan and
adds it back in during the next scan. In this manner, position information is
not lost over the course of the operation.

R R

_ Initialize is cleared difference = In, - Iny.;
difference = 0 P> | sign extend difference
remainder = 0 using WordSize
N1 =0 Ny =1In

Initialize is set L
-

. .

In the Absolute mode, the instruction can scale an input, such as position,
without losing any information from one scan to the next.

C C

Initialize is cleared

difference = 0 difference = Inj,
remainder = 0
Initialize is set

./ ./

Calculating the output and remainder

The PMUL instruction uses these equations to calculate Out in either relative
or absolute mode:

Ans = ((Difflnput x Multiplier) + INT_Remainder)
INT_Out = Ans / 100,000

INT_Remainder= Ans - (INT_Out * 100,000)

Out = INT_Out

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-23

Fault Conditions:

none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan INp1 =1In INp1=1In

Remainder =0 Remainder =0
instruction first run INpg=1In Ny =1In

Remainder =0 Remainder =0

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na

and the outputs

are not updated.

Enableln is set

The instruction executes. Enableln is always set.

EnableQut is set

. The instruction executes.

postscan

No action taken.

No action taken.

Example 1:

The most common use of the PMUL instruction is in the relative mode of
operation. In this mode, the PMUL instruction serves several purposes. First,
in the relative mode, the PMUL instruction differentiates the information that
it receives at its input from scan to scan. As data is received, the instruction
outputs the difference of the input from one scan to the next. This means that
if In = 500 at scan “n”, and then In = 600 at scan “n+1”, Out = 100 at scan
“n+1.>

Secondly, while in this mode of operation, the PMUL instruction also
compensates for “rollover” values of binary data originating from a feedback
module. For example, a resolver feedback module may have 12 bits of
resolution, represented as a binary value, with sign, ranging from —2048 to
2047. In terms of raw data coming from the feedback module, the rotation of
the feedback device might be represented as shown below:

2047

-2048

Publication 1756-RM006C-EN-P - June 2003

2-24 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Publication 1756-RM006C-EN-P - June 2003

In this example, as the value of the feedback data moves from 2047 to —2048,
the effective change in position is equivalent to a jump of 4095 counts in
position. In reality, however, this change in position is only 1 part in 4096 in
terms of the rotation of the resolver feedback device. By understanding the
true word size of the data that is being input from the feedback module, the
PMUL instruction views the data in a rotary fashion as shown in the following
diagram:

204 -2048

By knowing the word size of the data that is input to this block, the PMUL
instruction differentiates an output of 1 count as the input to the block moves
from 2047 to —2048, instead of the mathematically calculated 4095.

When applying this block, it is important to note that the feedback data should
not change by more than 2 the word size from one scan to the next, if
rotational direction is to be properly differentiated. In the example above, if
the feedback device is moving in a clockwise direction such that at scan A’ it
reads 0 and then scan ‘B’ it reads —2000, actual change in position is equivalent
to +2096 counts in the clockwise direction. However, since these two values
are more than 2 the words size, (or more than 2 the rotation of the physical
device,) the PMUL instruction calculates that the feedback device rotated in
the opposite direction and returns a value of —2000 instead of +2096.

The third attribute of the pulse multiplier block is that it retains the fractional
components from one scan to the next of any remainders that exist as a result
of the Multiplier/100,000 scaling factor. As each execution of the block is
completed, the remainder from the previous scan is added back into the total
of the current value so that all counts or “pulses” are ultimately accounted for
and no data is lost in the system. The output of the block, Out always yields a
whole number in a floating point data type.

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

2-25

Structured Text

PMUL 02.In :=
PMUL 02.Initalize := Initialize Position;

PMUL 02.WordSize := 12;

Position feedback;

PMUL 02.Multiplier := 25000;

PMUL (PMUL _02) ;

UPDN 02.Initialize := Initialize Position;

UPDN_02.InPlus

UPDN (UPDN_02) ;

Total Position

Function Block

PMUL_02

FhilL EI

Fulze Multiplier

PMUL_ 02.0ut;

UPDN 02.0ut;

UFDN_DZ

|'——E

d
Dut :IJ—C

urpN [

Up ! Dovan Accumulatar

Initialize dut Total_Fosition

Initialvalue

—————————— —s] Initialize | Infdinus
| o Initianvalue |
l WaordSize
o Multiplier I
________________ J
Assuming Initial_Position = 0 and Multiplier =25000 => (25,000/100,000):

Scan:

Position_Feedback:

PMUL_02.0ut:

Total_Position:

n

n+1

n+2

n+3

n+4

n+5

g |l WO N L] O

oO| | O| O O] ©O

| POl O O] O

Publication 1756-RM006C-EN-P - June 2003

2-26 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Example 2:

Publication 1756-RM006C-EN-P - June 2003

In this electronic line shaft application, motor A’s feedback acts as a master
reference which motor B needs to follow. Motor A’s feedback is aliased to
“Position_feedback.” Motor B’s feedback is aliased to “Follower_Position.”
Due to the multipliers of both instructions being a ratio of 1/4, motor B needs
to rotate once for every four revolutions of Motor A in order to maintain an
accumulated value of zero in the UPDN accumulator. Any value other than
zero on the output of the UPDN instruction is viewed as Position_error and
can be regulated and driven back out to motor B in order to maintain a
phase-lock between the two motors.

Structured Text

PMUL 02.In := Position feedback;

PMUL 0O2.Initalize := Initialize Position;
PMUL 02.WordSize := 12;

PMUL 02.Multiplier := 25000;

PMUL (PMUL_02) ;

PMUL 03.In := Follower Position;

PMUL 03.Initalize := Initialize Position;
PMUL 03.WordSize := 12;

PMUL 03.Multiplier := 100000;

PMUL (PMUL_03) ;

UPDN 02.Initialize := Initialize Position;

UPDN_02.InPlus PMUL 02.0ut;
UPDN 02.InMinus := PMUL 03.0ut;

UPDN (UPDN_02) ;

Position error := UPDN 02.0ut;

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

2-27

Motor A

“ll —» Position_feadback -, In

Initialize_Position =

Motor B

L

Function Block

PHMUL_0Z

UPDN_D2

FraLIL El

Fulse Multipliar

Out

—] Initialize

Follower_Fosition r

|

O Initialvalue

erdSize
hultiplier

UFDN

=]

Up # Down Accumulatern
Initialize Out
Initialfalue

InFlus

Intinus

PMUL_D2

FraLIL

=

Fulse Multipliar
In Out
Initialize
Initial¥alue
NordSize

hultiplier

] Position_error

Publication 1756-RM006C-EN-P - June 2003

2-28 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

S-Curve (SCRV)

Operands:

SCRV (SCRV_tag) ;

The SCRYV instruction performs a ramp function with an added jerk rate. The
jerk rate is the maximum rate of change of the rate used to ramp output to
input.

Structured Text

Operand: Type: Format: Description:

SCRV tag S_CURVE structure SCRV structure

Function Block

E SCRW_01
SCRW |:|
R Operand: Type: Format: Description:
din out SCRV tag S_CURVE structure SCRV structure
S_CURVE Structure
Input Parameter: Data Type: Description:;
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0

Initialize BOOL The Initialize input to the instruction. When set, the instruction holds Out = InitialValue
Default is cleared.

InitialValue REAL Initial value of S-Curve. When Initialize is set, Out = InitialValue.

Valid = any float
Default = 0.0

AbsAlgRamp BOOL Ramp type. If set, the instruction functions as an absolute value ramp. If cleared, the
instruction functions as an algebraic ramp.
Default is set.

AccelRate REAL Acceleration rate in input units per second?. A value of zero prevents Out from accelerating.
When AccelRate < 0, the instruction assumes AccelRate = 0 and sets the appropriate bit
in Status.

Valid = 0.0 to maximum positive float
Default = 0.0
DecelRate REAL Deceleration rate in input units per second?. A value of zero prevents Out from decelerating.

When DecelRate < 0, the instruction assumes DecelRate = 0 and sets the appropriate bit
in Status.

Valid = 0.0 to maximum positive float

Default =0.0

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-29

Input Parameter:

Data Type:

Description:

JerkRate

REAL

Jerk rate in input units per second®. Specifies the maximum rate of change in the
acceleration and deceleration rates when ramping output to input. When

(JerkRate *DeltaT) > AccelRate and/or DecelRate, the acceleration and deceleration rates
are not bounded. In this situation, the instruction behaves as a ramp function. When
JerkRate < 0,the instruction assumes JerkRate = 0 and sets the appropriate bit in Status.
Valid = 0.0 to maximum positive float

Default = 0.0

HoldMode

BOOL

S-Curve hold mode parameter. This parameter is used with the HoldEnable parameter. If
HoldMode is set when HoldEnable is set and Rate = 0, the instruction holds Out constant. In
this situation, the instruction holds Out as soon as HoldEnable is set, the JerkRate is ignored,
and Out produces a “corner” in its profile. If HoldMode is cleared when HoldEnable is set,
the instruction uses the JerkRate to bring Out to a constant value. Out is held when Rate = 0.
Do not change HoldMode once HoldEnable is set because the instruction will ignore

the change.

Default is cleared.

HoldEnable

BOOL

S-Curve hold enable parameter. When set, Out is held. When cleared, Out moves from its
current value until it equals In.
Default is cleared.

TimingMode

DINT

Selects timing execution mode.

Value: Description:

0 periodic mode

1 oversample mode

2 real time sampling mode

For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default=0

OversampleDT

REAL

Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default=0

RTSTime

DINT

Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default =1

RTSTimeStamp

DINT

Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default=0

Output Parameter:

Data Type:

Description:

EnableOut

BOOL

Enable output.

S_Mode

BOOL

S_Mode Output. When (Jerk * DeltaT) < Rate and Rate < Accel or Decel, S_Mode is set.
Otherwise, S_Mode is cleared.

Out

REAL

The output of the S-Curve instruction. Arithmetic status flags are set for this output.

Rate

REAL

Internal change in the Out in units per second.

DeltaT

REAL

Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status

DINT

Status of the function block.

Publication 1756-RM006C-EN-P - June 2003

2-30 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Output Parameter: Data Type: Description:

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

AccelRatelnv BOOL AccelRate is negative.

(Status.1)

DecelRatelnv BOOL DecelRate is negative.

(Status.2)

JerkRatelnv (Status.3) BOOL JerkRate is negative.

TimingModelnv BOOL Invalid timing mode.

(Status.27) For more information about timing modes, see appendix Function Block Attributes.

RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).

RTSTimelnv BOOL Invalid RTSTime value.

(Status.29)

RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.

(Status.30)

DeltaT (Status.31) BOOL Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-31

Description: The primary requirement of the SCRV instruction is to ensure that the rate

never changes by more than the specified jerk rate.

You can configure the SCRV instruction to produce an S-Curve profile or a
Ramp profile for a step input.

I SCRV Profile:

Description:

S-Curve profile

To produce an S-Curve profile, set JerkRate such that (JerkRate * DeltaT) < AccelRate
and/or DecelRate.

In S-Curve profile mode, the SCRV instruction ensures that the rate never changes more
than the specified JerkRate. The algorithm used to produce the S-Curve profile is
designed to produce a smooth, symmetric S-Curve for a step input. A trapezoidal
integration of Out is incorporated to facilitate this. As a result, changes in Rate will be
less than JerkRate during portions of the profile.

When a step change occurs on the input, rate is increased to the programmed AccelRate
or DecelRate. The AccelRate or DecelRate is maintained until a point at which rate must
begin decreasing in order for the output to reach input when rate reaches zero.

In some cases, depending on the values of acceleration, deceleration, and jerk, the
acceleration rate or deceleration rate might not be reached before the rate must begin
decreasing by jerk rate.

For very small step changes, the SCRV instruction will not attempt to produce an ‘S’
profile. In this mode the entire step will be output and Rate will reflect the change in
output. This behavior will occur if Out = In and the next step change to In can be output
with a rate less than or equal to the programmed JerkRate.

The SCRV instruction supports an algebraic ramp and an absolute value ramp. For an
algebraic ramp, the acceleration condition is defined by an input that is becoming more
positive, and the deceleration condition is defined by an input that is becoming more
negative. For an absolute value ramp, the acceleration condition is defined by an input
moving away from zero, and the deceleration condition is defined by an input moving
towards zero.

Ramp profile

To produce a Ramp profile, set JerkRate such that (JerkRate * DeltaT) > AccelRate and/or
DecelRate.

In Ramp Profile mode, the SCRV instruction always produces a rate of change equal to the
programmed AccelRate or DecelRate until the difference between Out and In requires less
then AccelRate or DecelRate to reach endpoint.

HoldMode = 0 operates the same as HoldMode = 1. When HoldEnable is set, Out is
immediately held and Rate becomes zero.

Publication 1756-RMO06C-EN-P - June 2003

2-32 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

The following diagram illustrates how the instruction modifies Out.

Initialize is cleared and Hold is set Initialize is set
-
Initialize is set Initialize and Hold are cleared

> initialize instruction® j

\ Initialize and Hold are cleared
hold out®@ Initialize is cleared and Hold is set calculate Out and Rate

- N

(1) When Initialize is set, the instruction sets the following:

Out,, = InitialValue
Out,,.1= Out,,
Rate,=0

Rate, ;=0

(2) When HoldMode is cleared, Out is moving toward In, and HoldEnable is set, the rate begins decreasing
towards zero at the jerk rate. Due to the JerkRate, Out is held at whatever value it had when the rate reached
zero. When the Out is finally held constant, it has a value that is different from the value it had the instant that
HoldEnable was set.

When HoldMode is set, Out is moving toward In, and HoldEnable is set, the rate is immediately set to zero. Out
is held at whatever value it had when HoldEnable was set.

Reducing the JerkRate during a transition might cause Out to overshoot the In.
If overshoot occurs, it is the result of enforcing the entered JerkRate. You can
avoid an overshoot by decreasing JerkRate in small steps while tuning or by
changing JerkRate while Out = In (not during a transition).

The time that is required for Out to equal a change in the input is a function of
AccelRate, JerkRate, and the difference between In and Out.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-33

Counts

Initial output

A

Calculating output and rate values

In transition from an initial value to final value, Out goes through three
regions. In region 1 and region 3, the rate of change of Out is based on
JerkRate. In region 2, the rate of change of Out is based on AccelRate or
DecelRate.

system reaches AccelRate

Out=1In

region 1 region 2 region 3

total time

The Out is calculated for each region as follows:

TotalTime = FinalOutput—InitialOutput+Acce1Raze
AccelRate JerkRate

Publication 1756-RM006C-EN-P - June 2003

2-34 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

with these equations for each region:

Region; Equations:

region 1

_ AccelRate

Time,
JerkRate

Y(Time) = InitialOutput + %(JerkRate) X Time2

region 2
Time. = JerkRate x (FinalOutput — Initial Output) — AccelRate’
2 JerkRate x AccelRate
AccelRate’
Y(Time) = InitialOutput + (AccelRate x Time) _Zccelhale
2 x JerkRate
region 3
Ti _ AccelRate
ime; = —————
JerkRate

FinalOutput —InitiaOutput _AccelRaz‘e)2

1
Y(Ti = FinalOutput — = (JerkRat (T‘ -
(Time) tnatulpu 2(erkRate) x| Time AccelRate JerkRate

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-35

Counts

Initial output

A

When:

2
AccelRate
InitialOutput — Final Output| < —————
|Initial Outpu inalOQutput| TerkRale

the SCRV block does not reach the AccelRate or DecelRate. The Out does the
following:

Out=1In
system never

reaches AccelRate ¢

region 1 region 3

total time

where:

TotalTime = JlnitialOutput —FinalOutput
JerkRate

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

2-36 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

Initialize internal variables.

Initialize internal variables.

instruction first run

No action taken.

No action taken.

Enableln is cleared

EnableQut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example:

In most coordinated drive applications, a master reference commands line

speed for an entire group of drives. As various references are selected, the
drives cannot be presented with “step” changes in speed reference because
differences in load inertia, motor torque, and tuning would not allow the
individual drive sections to react in a coordinated manner. The SCRV
instruction is designed to ramp and shape the reference signal to the drive
sections so that acceleration, deceleration, and jerk, (derivative of acceleration,)

are controlled. This instruction provides a mechanism to allow the reference to

the drives to reach the designated reference setpoint in a manner that
eliminates excessive forces and excessive impact on connected machinery and

equipment.

Structured Text

SSUM 01.Inl := Master reference;

SSUM 0Ol.Selectl := master select;

SSUM 01.In2 := Jog reference;

SSUM 0l.Select2 := jog select;

SSUM(SSUM_01) ;

select out

SSUM_01.0ut;

SCRV_01.In := select out;
SCRV_01.AccelRate := accel;
SCRV_01.DecelRate := accel;
SCRV_01.JerkRate := jerk rate;
SCRV (SCRV_01) ;

scurve out := SCRV_01.0ut

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-37

(Ve
(oo
raienes o

|
=

Function Block

SEUM_01
5SS E
Selected Summer
In1 Out
_—— — —— [Seleat
SCRY_01
n2 SCRW
—_— — — — —| Select? EI
S-Cunee
] AccelRate
{] DecelRate
] JekR ate

Step change from
0 to 70,000 units

aceel O

e

Accel/decel rate = 50,000 units/sec?
Jerk rate = 3,000 units/sec®

Accel/decel rate = 50,000 units/sec?
Jerk rate = 30,000 units/sec3

Publication 1756-RM006C-EN-P - June 2003

2-38 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Second-Order Controller
(SOC)

Operands:

SOC (SOC_tag) ;

E S0c_01
S0C =

Second-Order Contraller

In Out O

The SOC instruction is designed for use in closed loop control systems in a
similar manner to the PI instruction. The SOC instruction provides a gain
term, a first order lag, and a second order lead.

Structured Text

Operand: Type: Format: Description:

SOC tag SEC_ORDER_CONTROLLER structure SOC structure

Function Block

Operand: Type: Format: Description:

SOC tag SEC_ORDER_CONTROLLER structure SOC structure

SEC_ORDER_CONTROLLER Structure

Input Parameter: Data Type:

Description:;

Enableln BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

In REAL

The analog signal input to the instruction.
Valid = any float
Default = 0.0

Initialize BOOL

The instruction initialization command. When set, Out and internal integrator are set equal to
the value of InitialValue.
Default is cleared.

InitialValue REAL

The initial value input. When Initialize is set, Out and integrator are set to the value of
InitialValue. The value of InitialValue is limited using HighLimit and LowLimit.

Valid = any float

Default = 0.0

Gain REAL

The proportional gain for the instruction. If the value is out of range, the instruction limits the
value and sets the appropriate bit in Status.

Valid = any float > 0.0

Default = minimum positive float

WLag REAL

First order lag corner frequency in radians/second. If the value is out of range, the instruction
limits the value and sets the appropriate bit in Status.

Valid = see the Description section below for valid ranges

Default = maximum positive float

WLead REAL

Second order lead corner frequency in radians/second. If the value is out of range, the
instruction limits the value and sets the appropriate bit in Status.

Valid = see the Description section below for valid ranges

Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) 2-39

Input Parameter:

Data Type:

Description:

Zetalead

REAL

Second order lead damping factor. If the value is out of range, the instruction limits the value
and sets the appropriate bit in Status.

Valid = 0.0 t0 10.0

Default =0.0

HighLimit

REAL

The high limit value. This is the maximum value for Out. If HighLimit < LowLimit, the
instruction sets HighAlarm and LowAlarm, sets the appropriate bit in Status, and sets
Out = LowLimit.

Valid = LowLimit < HighLimit < maximum positive float

Default = maximum positive float

LowLimit

REAL

The low limit value. This is the minimum value for Out. If HighLimit < LowLimit, the
instruction sets HighAlarm and LowAlarm, sets the appropriate bit in Status, and sets
Out = LowLimit.

Valid = maximum negative float < LowLimit < HighLimit

Default = maximum negative float

HoldHigh

BOOL

The hold high command. When set, the value of the internal integrator is not allowed to
increase in value.
Default is cleared.

HoldLow

BOOL

The hold low command. When set, the value of the internal integrator is not allowed to
decrease in value.
Default is cleared.

TimingMode

DINT

Selects timing execution mode.

Value: Description:

0 periodic mode

1 oversample mode

2 real time sampling mode

For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default=0

OversampleDT

REAL

Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0

RTSTime

DINT

Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default =1

RTSTimeStamp

DINT

Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default =0

Publication 1756-RM006C-EN-P - June 2003

2-40 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Output Parameter: Data Type:

Description:;

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.

HighAlarm BOOL The maximum limit alarm indicator. Set when the calculated value for Out > HighLimit and
the output is clamped at HighLimit.

LowAlarm BOOL The minimum limit alarm indicator. Set when the calculated value for Out < LowLimit and the
output is clamped at LowLimit.

DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

Gainlnv (Status.1) BOOL

Gain > maximum or Gain < minimum.

WLaglnv (Status.2) BOOL

WLag > maximum or WLag < minimum.

WLeadInv (Status.3) ~ BOOL

WLead > maximum or WLead < minimum.

Zetaleadlnv (Status.4) BOOL

ZetalLead > maximum or ZetaLead < minimum.

HighLowLimsInv BOOL HighLimit < LowLimit.

(Status.5)

TimingModelnv BOOL Invalid timing mode.

(Status.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.

(Status.29)

RTSTimeStamplnv BOOL
(Status.30)

Invalid RTSTimeStamp value.

DeltaT (Status.31) BOOL

Invalid DeltaT value.

Description: The SOC instruction provides a gain term, a first order lag, and a second order

Publication 1756-RM006C-EN-P - June 2003

lead. The frequency of the lag is adjustable and the frequency and damping of
the lead is adjustable. The zero pair for the second order lead can be complex
(damping < unity) or real (damping > to unity). The SOC instruction is
designed to execute in a task where the scan rate remains constant.

The SOC instruction uses the following Laplace Transfer equation.

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

2-41

Parameter limitations

The following SOC parameters have these limits on valid values.

Parameter: Limit;
WLead
LowLimit = 0.00001
DeltaT
HighLimit = 207™
DeltaT
where DeltaT is in seconds
Wlag
LowLimit = 0.0000001
DeltaT
HighLimit = 207™
DeltaT
where DeltaT is in seconds
Zetalead

LowLimit = 0.0

HighLimit = 10.0

Whenever the value computed for the output is invalid or NAN, the
instruction sets Out = the invalid value and sets the arithmetic overflow status

flag. The internal parameters are not updated. In each subsequent scan, the

output is computed using the internal parameters from the last scan when the

output was valid.

Limiting

The instruction stops wind-up based on state of the Hold inputs.

If:

Then:

HoldHigh is set and
Integrator > Integrator,.y

Integrator = Integrator,_;

HoldLow is set and
Integrator < Integrator,_;

Integrator = Integrator,_;

Publication 1756-RM006C-EN-P - June 2003

2-42 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

The instruction also stops integrator windup based on the HighlLimit and

LowLimit values.

If:

Then:

Integrator > IntegratorHighLimit

Integrator = IntegratorHighLimit

Integrator < IntegratorLowLimit

Integrator = IntegratorLowLimit

where:
IntegratorHighLimit = HighLimit x GWLngag
WLead
IntegratorLowLimit = LowLimit x CMLWéag
WLead

The instruction also limits the value of Out based on the HighLimit and
LowLimit values.

If: Then:

HighLimit < LowLimit Out = LowLimit

Integrator = IntegratorLowLimit
HighLowLimslInv is set
HighAlarm is set

LowAlarm is set

Out > HighLimit Out = HighLimit
Integrator = Integrator,_;

HighAlarm is set

Out < LowLimit Out = LowLimit
Integrator = Integrator,_;

LowAlarm is set

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan The instruction sets the internal parameters and Out = 0.

The control algorithm is not executed.

instruction first run The instruction sets the internal parameters and Out = 0.

The control algorithm is not executed.

Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

Enableln is set The instruction executes and EnableOut is set. Enableln is always set.

he instruction executes.

postscan No action taken. No action taken.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-43

Example:

Diagram A: Process characteristics

o

system natural frequency

The SOC instruction is a specialized function block that is used in applications
where energy is transferred between two sections through a spring-mass
system. Typically in these types of applications, the frequency response of the
process itself can be characterized as shown in the bode diagram A below:

The SOC instruction implements a first order lag filter followed by a PID
controller to implement a transfer function with an integration, a second order
zero, (lead,) and a first order pole (lag.) With this instruction, PID tuning is
simplified because the regulating terms are arranged so that you have WlLead
and ZLead as inputs to the SOC instruction, rather than Kp, Ki, and Kd
values. The transfer function for the SOC instruction is:

© S2 2><§Leadxs+lj

+
2

0]
O pud Lead

H(s) =

(o)
(’OLag

Diagram B: Second order controller

Win

second order lead (W gaq)
moves gain from -1 to +1

The SOC instruction can be used in a torque or tension regulating application
where a load cell or force transducer is used as feedback and the output of the
regulating scheme operates directly on the torque (current) minor loop of the
drive. In many such applications, the controlled system may be mechanically
under-damped and have a natural frequency which is difficult to stabilize as it
becomes reflected through the feedback device itself.

motor Ny - . load

FB

Publication 1756-RM006C-EN-P - June 2003

2-44 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Using the SOC instruction, PID tuning is simplified because the regulating
terms can be arranged so that you have WlLead and ZLead as inputs to the
SOC instruction, rather than Kp, Ki, and Kd values. In this manner, the corner
frequencies of the controller/regulator are easier to adjust and setup against
the real world process. During startup, the natural frequency of the system and
the damping factor can be measured empirically or on-site. Afterward, the
parameters of the regulator can be adjusted to match the characteristics of the
process, allowing more gain and more stable control of the final process.

second order controller

process

ity

second order lead (W gaq)
moves gain from -1 to +1

system naturil_J

frequency

| F

In the system above, if Wlead is set equal to the system natural frequency, and
if Wlag is set substantially above the desired crossover frequency, (> 5 times
crossover), the resulting system response would look like the following:

LU

In an actual application, the steps in using and setting up this instruction

include:

1. Recognize the type of process that is being controlled. If the system’s
response to a step function results in a high degree of ringing or can be
characterized by the process curve shown above, this block may provide
the regulating characteristics required for stable control.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) ~ 2-45

2. Determine the natural frequency of the system/process. This can may
be arrived at empirically — or it might be measured on-site. Adjust
WlLead so that it corresponds with, or is slightly ahead of, the natural
frequency of the process itself.

3. Tune damping factor, Zlead, so that it cancels out any of the overshoot
in the system.

4. Move WLag out far enough past the system crossover frequency (>5
times) and begin increasing overall Gain to achieve desired system
response.

Structured Text

SOC 01.In := Process Error;

SOC 0Ol.Initialize := Regulator Enable Not;
SOC 01.Gain := Gain;

SOC _0l1.WLag := Lag_Radians per_ sec;

SOC _0l1.WLead := Lead radians_per sec;

SOC 0l.ZetalLead := Damping Factor;
SOC_0l1.HighLimit := Max Out;

SOC 0l.LowLimit := Min Out;

SOC (soC_01);

SOC _Out := SOC _01.0ut;

Function Block

Second-Order Controller

Frocess Error i In Cut] S0C_Out

Regulatar_Enable_Mot >D— - — — — — — —— —— — Initialize

| ain :)j] >ain
| Lag_Radians_per_sec :D—C iLag

|Lead_Radians_per_sec :J] - WiLead
| Damping_Factor ::D—C Zetalead
hax_Out >|: o HighLimit

Min_Out |} {7 LowwlLimit

Publication 1756-RM006C-EN-P - June 2003

2-46 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Up/Down Accumulator

(UPDN)

Operands:

UPDN (UPDN_tag) ;

£

The UPDN instruction adds and subtracts two inputs into an accumulated
value.

Structured Text

Operand: Type: Format: Description:

UPDN tag UP_DOWN_ACCUM structure UPDN structure

Function Block

UPDMN_01
UPDN E —
Up # Do Acsumulatar Operand: Type: Format: Description:
d inPlus outh UPDN tag UP_DOWN_ACCUM structure UPDN structure
i InMinus
UP_DOWN_ACCUM Structure

Input Parameter: Data Type: Description:

Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.

Initialize BOOL The initialize input request for the instruction. When Initialize is set, the instruction sets Out
and the internal accumulator to InitialValue.
Default is cleared.

InitialValue REAL The initialize value of the instruction.
Valid = any float
Default = 0.0

InPlus REAL The input added to the accumulator.
Valid = any float
Default=0.0

InMinus REAL The input subtracted from the accumulator.
Valid = any float
Default = 0.0

Hold BOOL The hold input request for the instruction. When Hold is set and Initialize is cleared, Out

is held.
Default is cleared.

Output Parameter: Data Type:

Description:

EnableOut

BOOL

Enable output.

Out

REAL

The output of the instruction. Arithmetic status lags are set for this output.

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN) 2-47

Description: The UPDN instruction follows these algorithms.

Condition: Action:

Hold is cleared and

Initialize is cleared AccumValue, = AccumValue, _, + InPlus —InMinus

Out = AccumValue,

Hold is set and

Initialize is cleared AccumValue, = AccumValue, _,

Out = AccumValue,

Initialize is set

AccumValue, = InitialValue

Out = AccumValue,

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan No action taken. No action taken.
instruction first run AccumValue,; = 0.0 AccumValue,,_; = 0.0
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.
Enableln is set The instruction executes. Enableln is always set.

EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

Publication 1756-RM006C-EN-P - June 2003

2-48 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Example: The UPDN instruction integrates counts from one scan to the next. This
instruction can be used for simple positioning applications or for other types
of applications where simple integration is required to create an accumulated
value from a process’s differentiated feedback signal. In the example below;,
Initial_Position is set to zero, while Differential_Position_Plus and
Differential_Position_Minus take varying values over a period of time. With
this instruction, InPlus and InMinus could also accept negative values.

Position_Integrated
&

—.{ one task scan
+20

Differential_Position_Plus = 1
Differential_Position_Minus =0

f \
‘ Differential_Position_Plus = 1 Ll_l_,_'_r'_,J ‘
B Differential_Position_Minus = 3

o -
| |

Initialize_Position Initialize_Position

Publication 1756-RM006C-EN-P - June 2003

Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

2-49

Initialize_Fosition o, |

Structured Text

UPDN_01.
UPDN_01.
UPDN_01.
UPDN_01.

Initialize := Initialize Position;
InitialValue := Initial Position;
InPlus := Differential Position Plus;

InMinus := Differential Position Minus;

UPDN (UPDN_01) ;

Position Integrated := UPDN 01.0ut;

Function Block

LFDN_04

URPDN El

Up J Drovun Accumul ator

Initial_Poszition , |— — — — —— —— —= Initializa Ot | Fozition_Integrated

{1 Initialvalue

| Ditferantial_F esition_Flus :13

] InFluz

| Differential_F osition_Minus)DJ

T Inbdinus

=] Hald

Publication 1756-RM006C-EN-P - June 2003

2-50 Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)

Notes:

Publication 1756-RM006C-EN-P - June 2003

Chapter 3

Filter Instructions
(DERV, HPF, LDL2, LPF, NTCH)

Introduction These filter instructions are available:

If you want to: Use this instruction: Available in these languages: See page:

calculate the amount of change of a signal over Derivative (DERV) structured text 3-2

time in per-second units. function block

filter input frequencies that are below the High Pass Filter (HPF) structured text 3-6

cutoff frequency. function block

filter with a pole pair and a zero pair. Second-Order Lead Lag structured text 3-12
(LDL2) function block

filter input frequencies that are above the Low Pass Filter (LPF) structured text 3-18

cutoff frequency. function block

filter input frequencies that are at the notch Notch Filter (NTCH) structured text 3-24

frequency. function block

Publication 1756-RM006C-EN-P - June 2003

3-2 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Derivative (DERV) The DERYV instruction calculates the amount of change of a signal over time
in per-second units.
Operands:
DERV (DERV_tag) ; Structured Text
Operand: Type: Format: Description:
DERV tag DERIVATIVE structure DERV structure
P DERV_ 01 Function Block
DERW |:|
Derivative Operand: Type: Format: Description:
din out DERV tag DERIVATIVE structure DERV structure
E| BwPass
DERIVATIVE Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0
Gain REAL Derivative multiplier
Valid = any float
Default = 1.0
ByPass BOOL Request to bypass the algorithm. When ByPass is set, the instruction sets Out = In.
Default is cleared.
TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode

For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default=0

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-3

Input Parameter: Data Type: Description:
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default=0
RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default = 1
RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default=0
Output Parameter: Data Type: Description:
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.
Status DINT Status of the function block.
InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.
TimingModelnv BOOL Invalid TimingMode value.
(Status.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.
(Status.29)
RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.
(Status.30)
DeltaTlnv (Status.31) BOOL Invalid DeltaT value.
Description: The DERYV instruction supports a bypass input that lets you stop calculating

the derivative and pass the signal directly to the output.

When Bypass is: The instruction uses this equation:
set

Out = In,

In,_, =1In
cleared and
DeltaT >0 In —In

Out = Gain——-—""1

DeltaT
Inn—l = Inn

where DeltaT is in seconds

Publication 1756-RM006C-EN-P - June 2003

3-4 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan g1 =In, g1 =1In;,
instruction first run INyq =1, Ny = 1IN,
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

Enableln is set The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan No action taken.

No action taken.

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-5

Example: The derivative instruction calculates the amount of change of a signal over
time in per-second units. This instruction is often used in closed loop control
to create a feedforward path in the regulator to compensate for processes that
have a high degree of inertia.

Structured Text

DERV _01.In := Speed Reference;
DERV _0l.Gain := Feedforward Gain;
DERV (DERV_01) ;

PI 01.In := Speed Reference - Speed feedback;
PI 0l1.Kp := Proportional Gain;

PI 01.wWld := Integral Gain;

PI(PI_01);

regulator out := DERV_01.0Out + PI _01.0ut;

Function Block

DERY_01
DERY El
Derivative
] In Out
Feedfonmard_%ain] ain
ADD_O1
SUB_01 FI1_01 ADD EI
sue L] P[] Add
Speed Reference Subtract Pl Soureed Crest =) regulatar_out
Sourcef Dest [1 In Out [—— SourceB
Speed_feedback O SourceB ———————————— 1 kp
] wild

Froporional_Gain Cr
Integral_Gain N,

Publication 1756-RM006C-EN-P - June 2003

3-6 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

H|gh Pass Filter (H PF) The HPF instruction provides a filter to attenuate input frequencies that are
below the cutoff frequency.

Operands:

HPF (HPF_tag) ; Structured Text

Operand: Type: Format: Description:

HPF tag FILTER_HIGH_PASS structure HPF structure

E Function Block

HPF_01

HPF]

High-P ass Filter Operand: Type: Format: Description:

din out HPF tag FILTER_HIGH_PASS structure HPF structure

FILER _HIGH_PASS Structure

Input Parameter: Data Type: Description:

Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.

In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0

Initialize BOOL Request to initialize filter control algorithm. When set, the instruction sets Out = In.
Default is cleared.

WLead REAL The lead frequency in radians/second. If WLead < minimum or WLead > maximum, the
instruction sets the appropriate bit in Status and limits WLead.
Valid = see Description section below for valid ranges
Default = 0.0

Order REAL Order of the filter. Order controls the sharpness of the cutoff. If Order is invalid, the
instruction sets the appropriate bit in Status and uses Order = 1.
Valid=1to3
Default =1

TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode
For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default =0

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-7

Input Parameter: Data Type: Description:

OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default=0

RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default = 1

RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default=0

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

WlLeadlnv (Status.1) ~ BOOL WlLead < minimum value or WLead > maximum value.

Orderlnv (Status.2) BOOL Invalid Order value.

TimingModelnv BOOL Invalid TimingMode value.

(Status.27) For more information about timing modes, see appendix Function Block Attributes.

RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).

RTSTimelnv BOOL Invalid RTSTime value.

(Status.29)

RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.

(Status.30)

DeltaTInv (Status.31) ~ BOOL Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

3-8 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Description: The HPF instruction uses the Order parameter to control the sharpness of the
cutoff. The HPF instruction is designed to execute in a task where the scan
rate remains constant.

The HPF instruction uses these equation:

When: The instruction uses this transfer function:
Order=1
S
s+
Order=2

2
S

2 2
K +A/§><s><0)+(x)

Order=3

3
N

3 2 2 3
SSHRxsS T Xx0)+2xsx0 +tO

with these parameters limits (where DeltaT is in seconds):

Parameter: Limitations:
WLead first order
LowLimit 0.0000001
DeltaT
WLead second order
LowLimit 0.00005
DeltaT
WLead third order
LowLimit 0.001
DeltaT
HighLimit
0.7
DeltaT

Whenever the value computed for the output is invalid, NAN, or £INF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. When the value computed for the output becomes valid, the instruction
initializes the internal parameters and sets Out = In.

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-9

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions:

none
Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

The instruction sets Out = In. The instruction sets Out = In.

The control algo

rithm is not executed. The control algorithm is not executed.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na

and the outputs

are not updated.

Enableln is set

The instruction executes. Enableln is always set.

EnableQut is set

. The instruction executes.

postscan

No action taken.

No action taken.

Example:

The HPF instruction attenuates signals that occur below the configured cutoff
frequency. This instruction is typically used to filter low frequency “noise” or
disturbances that originate from either electrical or mechanical soutces. You
can select a specific order of the filter to achieve various degrees of
attenuation. Note that higher orders increase the execution time for the filter
instruction.

Publication 1756-RM006C-EN-P - June 2003

3-10 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

The following graphs illustrate the affect of the various orders of the filter for
a given cutoff frequency. For each graph, ideal asymptotic approximations are
given with gain and frequency in logarithmic scales. The actual response of the
filter approaches these curves but does not exactly match these curves.

Filter: Graph:
15 order filter Gain
104—=—- >
1 : Frequency:
| rad/sec, log scale
|
I
I
Iil'JLEﬂi
2" order filter Gain
1014 ———- I
2 : Frequency:
: rad/sec, log scale
|
I
C"”'L:ai
3" order filter Gain
104———- >
|
+3/ Frequency:
: rad/sec, log scale
I
I
Iil'JLzai

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) 3-11

Structured Text

HPF 01.In :=

HPF O0l.WLead

Velocity Feedback;

:= Cutoff frequency;

HPF 01.0Order := 2;
HPF (HPF 01) ;
filtered velocity output := HPF 01.Out
Function Block

HFF_04

HRF [
High-F az= Filter
|Ue|u:-ci‘q.r_Feedbad(;D—Em Dutj—c(filtered_velosity_output

Cutoff_frequerncy)3

z n

|

iLead
Order

Publication 1756-RM006C-EN-P - June 2003

3-12 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Second-Order Lead Lag
(LDL2)

Operands:

LDL2 (LDL2 tag);

E LDz o4

Loz |II

The LDI.2 instruction provides a filter with a pole pair and a zero pair. The
frequency and damping of the pole and zero pairs are adjustable. The pole or
zero pairs can be either complex (damping less than unity) or real (damping
greater than or equal to unity).

Structured Text

Operand: Type: Format: Description:

LDL2 tag LEAD_LAG_SEC_ORDER structure LDL2 structure

Function Block

Second-Order Lead-Lag Operand: Type: Format: Description:
dIn dut [LDL2 tag LEAD_LAG_SEC_ORDER structure LDL2 structure
LEAD LAG_SEC_ORDER Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default=0.0

Initialize BOOL Request to initialize filter control algorithm. When set, the instruction sets Out = In.
Default is cleared.

WlLead REAL The lead corner frequency in radians/second. If WLead < minimum or WLead > maximum, the
instruction sets the appropriate bit in Status and limits WLead. If the WLag:WLead ratio >
maximum ratio, the instruction sets the appropriate bit in Status and limits WLag.

Valid = see Description section below for valid ranges
Default = 0.0

Wlag REAL The lag corner frequency in radians/second. If WLag < minimum or WLag > maximum, the
instruction sets the appropriate bit in Status and limits WLag. If the WLag:WLead
ratio > maximum ratio, the instruction sets the appropriate bit in Status and limits WLag.
Valid = see Description section below for valid ranges
Default=0.0

Zetalead REAL Second order lead damping factor. Only used when Order = 2. If ZetalLead < minimum or

Zetalead > maximum, the instruction sets the appropriate bit in Status and limits ZetalLead.
Valid=0.0t0o 4.0
Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-13

Input Parameter: Data Type: Description:
Zetalag REAL Second order lag-damping factor. Only used when Order = 2. If ZetaLag < minimum or
Zetalag > maximum, the instruction sets the appropriate bit in Status and limits Zetal ag.
Valid = 0.05 to 4.0
Default = 0.0
Order REAL Order of the filter. Selects the first or second order filter algorithm. If invalid, the instruction
sets the appropriate bit in Status and uses Order = 2.
Valid=1to 2
Default =2
TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode
For more information about timing modes, see appendix Function Block Attributes.
Valid=0to 2
Default=0
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default=0
RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default=1
RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default=0
Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

WLeadlnv (Status.1) ~ BOOL

WLead < minimum value or WLead > maximum value.

WlLaglnv (Status.2) BOOL

WLag < minimum value or WLag > maximum value.

ZetaleadInv (Status.3) BOOL

Lead damping factor < minimum value or lead damping factor > maximum value.

Zetalaglnv (Status.4) BOOL

Lag damping factor < minimum value or lag damping factor > maximum value.

Orderinv (Status.5) BOOL

Invalid Order value.

WLagRatiolnv BOOL WLag:WLead ratio greater than maximum value.

(Status.6)

TimingModelnv BOOL Invalid TimingMode value.

(Status.27) For more information about timing modes, see appendix Function Block Attributes.

RTSMissed (Status.28) BOOL

Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).

Publication 1756-RM006C-EN-P - June 2003

3-14 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Output Parameter: Data Type: Description:

RTSTimelnv BOOL Invalid RTSTime value.
(Status.29)

RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.
(Status.30)

DeltaTlnv (Status.31) BOOL Invalid DeltaT value.

Description: The LDI.2 instruction filter is used in reference forcing and feedback forcing
control methodologies. The LDL2 instruction is designed to execute in a task
where the scan rate remains constant.

The LDL2 instruction uses these equations:

When: The instruction uses this Laplace transfer function:

Order=1

+1

H(S) - OF ead
+1

mLag

Order=2

2 X X8
N + E->Lead +1

2 o)
[0 Lead
H(s) = —Lead

EJLag + 1
mLag

2
(")Lag

Normalize the filter such that m| gqq = 1

2
S +2X§Lead><5+1

H(s) = 2
aLag +1

2 ®
(DLag Lag

with these parameters limits (where DeltaT is in seconds):

Parameter: Limitations:
WoLead first order
LowLimit 0.0000001
DeltaT
WLead second order
LowLimit 0.00005
DeltaT
HighLimit
0.7n
DeltaT

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-15

Arithmetic Status Flags:

Fault Conditions:

Parameter:

Limitations:

WLead:WLag ratio

If WLead > WLag, no limitations

If WLag > WLead:
e no minimum limitation for WLag:WLead
o first order maximum for WLag:WLead = 40:1 and the
instruction limits WLag to enforce this ratio
e second order maximum for WLag:WLead = 10:1 and the
instruction limits WLag to enforce this ratio

Zetalead second order
only

LowLimit=0.0
HighLimit = 4.0

Zetalag second order
only

LowLimit = 0.05
HighLimit = 4.0

Whenever the value computed for the output is invalid, NAN, or ZINF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. When the value computed for the output becomes valid, the instruction
initializes the internal parameters and sets Out = In.

Arithmetic status flags are set for the Out output.

none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

The instruction sets Out = In.
The control algorithm is not executed.

The instruction sets Out = In.
The control algorithm is not executed.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Publication 1756-RM006C-EN-P - June 2003

3-16 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Example: The LDL2 instruction can attenuate between two frequencies or can amplify
between two frequencies, depending on how you configure the instruction.
Since the Lead and Lag frequencies can be set to values that are larger or
smaller than each other, this instruction may behave as a Lead-Lag block, or,
as a Lag-Lead block, depending on which frequency is configured first. Note
that higher orders increase the execution time for the filter instruction.

Filter: Graph:
1%t order lead-lag .
Gain
(©Lead < mLag) T
10 >

Ll
- Frequency:
rad/sec, log scale

Wimg
2" order lead-lag Gain '
(@Leag < ®Lag) '
|
+ :
|
1 |
10 A D —-
: | Frequency:
D Oy rad/sec, log scale

1% order lead-lag
(@Lag < ®eag)

-
-1 Frequency:

rad/sec, log scale

2" order lead-lag Gain
((’JLag < OLead) 10 R — -

Frequency:
rad/sec, log scale

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

3-17

Structured Text

LDL2 01.In

:= frequency_ input;

LDL2 0l.WLead

LDL2 0l.WLag

LDL2 (LDL2_01) ;

Lead lag output

Function Block

:= Lead frequency;

Lag frequency;

:= LDL2 01.0ut;

LbLz_04

requency_input

Lead_frequency)3

|

Lag_frequency

L2

=]

Second-Order Lead-Lag

In
iLead
iLag

Out

:)—Cli Lead_lag_output

Publication 1756-RM006C-EN-P - June 2003

3-18 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Low Pass Filter (LPF) The LPF instruction provides a filter to attenuate input frequencies that are

above the cutoff frequency.

Operands:

LPF (LPF_tag) ; Structured Text

Operand: Type: Format: Description:

LPF tag FILTER_LOW_PASS structure LPF structure

P LPF a1 Function Block

L[]

Lows P ass Filter Operand: Type: Format: Description:

din outh LPF tag FILTER_LOW_PASS structure LPF structure

FILTER _LOW_PASS Structure

Input Parameter: Data Type: Description:

Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.

In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0

Initialize BOOL Request to initialize filter control algorithm. When set, the instruction sets Out = In.
Default is cleared.

Wlag REAL The lag frequency in radians/second. If WLag < minimum or WLag > maximum, the
instruction sets the appropriate bit in Status and limits WLag.
Valid = see Description section below for valid ranges
Default = maximum positive float

Order REAL Order of the filter. Order controls the sharpness of the cutoff. If Order is invalid, the
instruction sets the appropriate bit in Status and uses Order = 1.
Valid=1to3
Default =1

TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode
For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default =0

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-19

Input Parameter: Data Type: Description:

OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default=0

RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default = 1

RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default=0

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

WlLaglnv (Status.1) BOOL WLag < minimum value or WLag > maximum value.

Orderlnv (Status.2) BOOL Invalid Order value.

TimingModelnv BOOL Invalid TimingMode value.

(Status.27) For more information about timing modes, see appendix Function Block Attributes.

RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).

RTSTimelnv BOOL Invalid RTSTime value.

(Status.29)

RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.

(Status.30)

DeltaTInv (Status.31) ~ BOOL Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

3-20 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Description: The LPF instruction uses the Order parameter to control the sharpness of the
cutoff. The LPF instruction is designed to execute in a task where the scan rate
remains constant.

The LPF instruction uses these equations:

When: The instruction uses this transfer function:
Order=1
O]
s+
Order=2
2
O]

2 2
s +ﬁ><s><o)+co

Order=3

3
()

s3+(2><s2><o3)+(2><s><032)><0)3

with these parameters limits (where DeltaT is in seconds):

Parameter: Limitations:
WlLag first order
LowLimit 0.0000001
DeltaT
WLag second order
LowLimit 0.00005
DeltaT
WlLag third order LowLimit
0.001
DeltaT
HighLimit
0.7
DeltaT

Whenever the value computed for the output is invalid, NAN, or £INF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. When the value computed for the output becomes valid, the instruction
initializes the internal parameters and sets Out = In.

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) 3-21

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions:

none
Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

The instruction sets Out = In. The instruction sets Out = In.

The control algo

rithm is not executed. The control algorithm is not executed.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na

and the outputs

are not updated.

Enableln is set

The instruction executes. Enableln is always set.

EnableQut is set

. The instruction executes.

postscan

No action taken.

No action taken.

Example:

The LPF instruction attenuates signals that occur above the configured cutoff
frequency. This instruction is typically used to filter out high frequency “noise”
or disturbances that originate from either electrical or mechanical soutces. You
can select a specific order of the filter to achieve various degrees of
attenuation. Note that higher orders increase the execution time for the
instruction.

Publication 1756-RM006C-EN-P - June 2003

3-22 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

The following graphs illustrate the effect of the various orders of the filter for
a given cutoff frequency. For each graph, ideal asymptotic approximations are
given with gain and frequency in logarithmic scales. The actual response of the
filter approaches these curves but does not exactly match these curves.

Filter: Graph:

15 order filter

Gain T
1.0

P
L

A Frequency:
rad/sec, log scale

[F]
nd :
2"% order filter Gain
10 : -
I o Frequency:
: rad/sec, log scale
[
c"”lLﬂI
rd 1
3™ order filter Gain
1.0 : »
3 Frequency:
| rad/sec, log scale
|
[
wLm

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-23

Structured Text

LPF 01.In

LPF Ol.WLag

LPF (LPF_01);

filtered velocity outp

Function Block

LFF_04

ut

Velocity Feedback;

Cutoff frequency;

LPF 01.0ut

LFF

Lownk P az= Filter

In

|Ue|ncit‘g.r_Feedhad< >D—|:

Cutoff_frequency)3

,_
1

iLag

(=

Out

3—G< filtered_welocity_output

Publication 1756-RM006C-EN-P - June 2003

3-24 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Notch Filter (NTCH)

Operands:

NTCH (NTCH_tag) ;

HTCH_04

HTCH E

Motch Filter

out

The NTCH instruction provides a filter to attenuate input frequencies that are
at the notch frequency.

Structured Text

Operand: Type: Format: Description:

NTCH tag FILTER_NOTCH structure NTCH structure

Function Block

Operand: Type: Format: Description:

NTCH tag FILTER_NOTCH structure NTCH structure

FILTER_NOTCH Structure

Input Parameter:

Data Type:

Description:

Enableln

BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

REAL

The analog signal input to the instruction.
Valid = any float
Default = 0.0

Initialize

BOOL

Request to initialize filter control algorithm. When set, the instruction sets Out = In.
Default is cleared.

WNotch

REAL

The filter center frequency in radians/second. If WNotch < minimum or WNotch > maximum,
the instruction sets the appropriate bit in status and limits WNotch.

Valid = see Description section below for valid ranges

Default = maximum positive float

QFactor

REAL

Controls the width and depth ratio. Set QFactor = 1 / (2*desired damping factor). If
QFactor < minimum or QFactor > maximum value, the instruction sets the appropriate bit in
Status and limits QFactor.

Valid = 0.5 to 100.0

Default = 0.5

Order

REAL

Order of the filter. Order controls the sharpness of the cutoff. If Order is invalid, the
instruction sets the appropriate bit in Status and uses Order = 2.

Valid=2or4

Default =2

Publication 1756-RM006C-EN-P - June 2003

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) ~ 3-25

Input Parameter: Data Type: Description:
TimingMode DINT Selects timing execution mode.
Value: Description:
0 periodic mode
1 oversample mode
2 real time sampling mode
For more information about timing modes, see appendix Function Block Attributes.
Valid=0to 2
Default=0
OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0
RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default =1
RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default =0
Output Parameter; Data Type: Description;
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.
Status DINT Status of the function block.
InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.
WNotchinv (Status.1) BOOL WNotch < minimum or WNotch > maximum.
QFactorlnv (Status.2) ~ BOOL QFactor < minimum or QFactor > maximum.
Orderlnv (Status.3) BOOL Invalid Order value.
TimingModelnv BOOL Invalid TimingMode value.
(Status.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.
(Status.29)
RTSTimeStamplnv BOOL Invalid RTSTimeStamp value.
(Status.30)
DeltaTlnv (Status.31) BOOL Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

3-26 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Description:

Arithmetic Status Flags:

Fault Conditions:

Publication 1756-RM006C-EN-P - June 2003

The NTCH instruction uses the Order parameter to control the sharpness of
the cutoff. The QFactor parameter controls the width and the depth ratio of
the notch. The NTCH instruction is designed to execute in a task where the
scan rate remains constant.

The NTCH instruction uses this equation:
2, 2
(s +o)

2 2!
(s +s><9+co)

where 7 is the Order operator with these parameters limits (where DeltaT is in
seconds):

Parameter: Limitations:
WNotch second order
LowLimit 0.0000001
DeltaT
WNotch fourth order
LowLimit 0.001
DeltaT
HighLimit
0.7n
DeltaT
QFactor LowLimit=0.5

HighLimit = 100.0

Whenever the value computed for the output is invalid, NAN, or ZINF, the
instruction sets Out = the invalid value and sets the arithmetic overflow status
flag. When the value computed for the output becomes valid, the instruction
initializes the internal parameters and sets Out = In.

Arithmetic status flags are set for the Out output.

none

Filter Instructions (DERV, HPF, LDL2, LPF, NTCH) 3-27

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

The instruction sets Out = In. The instruction sets Out = In.

The control algo

rithm is not executed. The control algorithm is not executed.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na

and the outputs

are not updated.

Enableln is set

The instruction executes. Enableln is always set.

EnableOut is set

. The instruction executes.

postscan

No action taken.

No action taken.

Example:

The NTCH instruction attenuates a specific resonance frequency. Typically,
these resonance frequencies are directly in the range of response being
regulated by the closed loop control system. Often, they are generated by loose
mechanical linkages that cause backlash and vibration in the system. Although
the best solution is to correct the mechanical compliance in the machinery, the
notch filter can be used to soften the effects of these signals in the closed loop
regulating scheme.

The following diagram shows the ideal gain curve over a frequency range for a
specific center frequency and Q factor. As Q increases, the notch becomes
wider and shallower. A Q decreases, the notch becomes deeper and narrower.
The instruction may be set for an order of 2 or an order of 4. Higher orders
take more execution time.

Q set smaller

Gain qpgt

Q set larger

4 ,
T Frequency

Publication 1756-RM006C-EN-P - June 2003

3-28 Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)

Structured Text

NTCH 01.In :=
NTCH_01.WNotch

NTCH Ol.QFactor

NTCH (NTCH_01) ;

Notch output :=

Function Block

frequency input;

:= center frequency;

:= Notch width depth;

NTCH 01.0ut;

requency_input

center_frequency)3

| Noteh_width_depth

-

Publication 1756-RM006C-EN-P - June 2003

NTCH_0O1
MTCH L]
Maotch Filter
In Out O Maoteh_output
WM otch
QF actor

Chapter 4

Select/Limit Instructions
(ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Introduction These select/limit instructions atre available:
If you want to: Use this instruction: Available in these languages: See page:
select one of as many as six inputs. Enhanced Select (ESEL) structured text 4-2
function block
limit an analog input between two values. High/Low Limit (HLL) structured text 4-9
function block
select one of eight inputs. Multiplexer (MUX) function block 4-12
limit the amount of change of a signal Rate Limiter (RLIM) structured text 4-15
over time. function block
select one of two inputs. Select (SEL) function block 4-19
select between the input value and the Selected Negate (SNEG) structured text 4-21
negative of the input value. function block
select real inputs to be summed. Selected Summer (SSUM) structured text 4-23

function block

Publication 1756-RM006C-EN-P - June 2003

4-2 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Enhanced Select (ESEL) The ESEL instruction lets you select one of as many as six inputs. Selection

options include:

e manual select (either by operator or by program)
e high select

e low select

e median select

e average (mean) select

Operands:
ESEL (ESEL_tag) ; Structured Text
Operand: Type: Format: Description:
ESEL tag SELECT_ENHANCED structure ESEL structure
F ESEL 01 Function Block
ESEL ,j
Enhanced Select Operand: Type: Format: Description:
g Int out ESEL tag SELECT_ENHANCED structure ESEL structure
g In2 Selectedln 5
O InZ FrogQOper [0
d Ind Owerride [0
O InG
i In
] ProgSelector
=] ProgProgReq
= ProgdperReq
& FrogDveridefieq SELECT_ENHANCED Structure
Input Parameter: Data Type: Description:;
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
Inl REAL The first analog signal input to the instruction.
Valid = any float
Default = 0.0
In2 REAL The second analog signal input to the instruction.
Valid = any float
Default = 0.0
In3 REAL The third analog signal input to the instruction.
Valid = any float
Default = 0.0

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) 4-3

Input Parameter: Data Type: Description:

In4 REAL The fourth analog signal input to the instruction.
Valid = any float
Default = 0.0

In5 REAL The fifth analog signal input to the instruction.
Valid = any float
Default = 0.0

In6 REAL The sixth analog signal input to the instruction.
Valid = any float
Default = 0.0

In1Fault BOOL Bad health indicator for Inl. If In1 is read from an analog input, then In1Fault is normally
controlled by the fault status on the analog input. If all the In,Fault inputs are set, the
instruction sets the appropriate bit in Status, the control algorithm is not executed, and Out
is not updated
Default = cleared.

In2Fault BOOL Bad health indicator for In2. If In2 is read from an analog input, then In2Fault is normally
controlled by the fault status on the analog input. If all the In,Fault inputs are set, the
instruction sets the appropriate bit in Status, the control algorithm is not executed, and Out
is not updated
Default = cleared.

In3Fault BOOL Bad health indicator for In3. If In3 is read from an analog input, then In3Fault is normally
controlled by the fault status on the analog input. If all the InyFault inputs are set, the
instruction sets the appropriate bit in Status, the control algorithm is not executed, and Out
is not updated
Default = cleared.

In4Fault BOOL Bad health indicator for In4. If In4 is read from an analog input, then In4Fault is normally
controlled by the fault status on the analog input. If all the In,Fault inputs are set, the
instruction sets the appropriate bit in Status, the control algorithm is not executed, and Out
is not updated
Default = cleared.

In5Fault BOOL Bad health indicator for In5. If In5 is read from an analog input, then InSFault is normally
controlled by the fault status on the analog input. If all the In,Fault inputs are set, the
instruction sets the appropriate bit in Status, the control algorithm is not executed, and Out
is not updated
Default = cleared.

In6Fault BOOL Bad health indicator for In6. If In6 is read from an analog input, then In6Fault is normally
controlled by the fault status on the analog input. If all the In,Fault inputs are set, the
instruction sets the appropriate bit in Status, the control algorithm is not executed, and Out
is not updated
Default = cleared.

InsUsed DINT Number of inputs used. This defines the number of inputs the instruction uses. The

instruction considers only In1 through Injnsuseq in high select, low select, median select, and
average select modes. If this value is invalid, the instruction sets the appropriate bit in
Status. The instruction does not update Out if InsUsed is invalid and if the instruction is not
in manual select mode and if Override is cleared.

Valid=1to 6

Default =1

Publication 1756-RM006C-EN-P - June 2003

4-4 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Input Parameter: Data Type: Description:

SelectorMode DINT Selector mode input. This value determines the action of the instruction.
Value: Description:
0 manual select
1 high select
2 low select
3 median select
4 average select
If this value is invalid, the instruction sets the appropriate bit in Status and does not
update Out.
Valid=0to 4
Default=0

ProgSelector DINT Program selector input. When the selector mode is manual select and the instruction is in
Program control, ProgSelector determines which input (In1-In6) to move into Out. If
ProgSelector = 0, the instruction does not update Out. If ProgSelector is invalid, the
instruction sets the appropriate bit in Status. If invalid and the instruction is in Program
control, and the selector mode is manual select or Override is set, the instruction does not
update Out.
Valid=0to 6
Default =0

OperSelector DINT Operator selector input. When the selector mode is manual select and the instruction is in
Operator control, OperSelector determines which input (In1-In6) to move into Out. If
OperSelector = 0, the instruction does not update Out. If OperSelector is invalid, the
instruction sets the appropriate bit in Status. If invalid and the instruction is in Operator
control, and the selector mode is manual select or Override is set, the instruction does not
update Out.
Valid=0to 6
Default =0

ProgProgReq BOOL Program program request. Set by the user program to request Program control. Ignored if
ProgOperReq is set. Holding this set and ProgOperReq cleared locks the instruction into
Program control.
Default is cleared.

ProgOperReq BOOL Program operator request. Set by the user program to request Operator control. Holding this
set locks the instruction into Operator control.
Default is cleared.

ProgOverrideReq BOOL Program override request. Set by the user program to request the device to enter Override
mode. Ignored if ProgOper is cleared.
Default is cleared.

OperProgReq BOOL Operator program request. Set by the operator interface to request Program control. The
instruction clears this input.
Default is cleared.

OperOperReq BOOL Operator operator request. Set by the operator interface to request Operator control. The
instruction clears this input.
Default is cleared.

ProgValueReset BOOL Reset program control values. When set, all the program request inputs are cleared each

execution of the instruction.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) 4-5

Output Parameter: Data Type:

Description;

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.

SelectedIn DINT Number of input selected. The instruction uses this value to display the number of the input
currently being placed into the output. If the selector mode is average select, the instruction
sets Selectedin = 0.

ProgOper BOOL Program/Qperator control indicator. Set when in Program control. Cleared when in
Operator control.

Override BOOL Override mode. Set when the instruction is in Override mode.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

InsFaulted (Status.1) ~ BOOL

In,Fault inputs for all the used In,, inputs are set.

InsUsedInv (Status.2) ~ BOOL

Invalid InsUsed value.

SelectorModelnv BOOL Invalid SelectorMode value.
(Status.3)

ProgSelectorinv BOOL Invalid ProgSelector value.
(Status.4)

OperSelectorlnv BOOL Invalid OperSelector value.
(Status.5)

Description: The ESEL instruction operates as follows:

Condition:

Action:

SelectorMode = 0 (manual select) or

Out = In[OperSelector]

Override is set, ProgOper is cleared, and OperSelector =0 Selectedin = OperSelector

SelectorMode = 0 (manual select) or

Out = In[ProgSelector]

Override is set, ProgOper is set, and ProgSelector =0 SelectedIn = ProgSelector

SelectorMode = 1 (high select) and
Override is cleared

Out = maximum of In[InsUsed)]
SelectedIn = index to the maximum input value

SelectorMode = 2 (low select) and
Override is cleared

Out = minimum of In[InsUsed]
Selectedin = index to the minimum input value

SelectorMode = 3 (median select) and
Override is cleared

Out = median of In[InsUsed)]
SelectedIn = index to the median input value

SelectorMode = 4 (average select) and
Override is cleared

Out = average of In[InsUsed]
Selectedin=0

For SelectorMode 1 through 4, a bad health indication for any of the inputs
causes that bad input to be disregarded in the selection. For example, if
SelectorMode = 1 (high select) and if In6 had the highest value but had bad
health, then the next highest input with good health is moved into the output.

For high or low select mode, if two inputs are equal and are high or low, the
instruction outputs the first found input. For median select mode, the median

Publication 1756-RM006C-EN-P - June 2003

4-6 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Arithmetic Status Flags:

value always represents a value selected from the available inputs. If more than

one value could be the median, the instruction outputs the first found input.

Monitoring the ESEL instruction

There is an operator faceplate available for the ESEL instruction. For more
information, see appendix Function Block Faceplate Controls.

Fault Conditions: none

Arithmetic status flags are set for the Out output.

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

All the operator request inputs are cleared.
If ProgValueReset is set, all the program request
inputs are cleared.

All the operator request inputs are cleared.
If ProgValueReset is set, all the program request
inputs are cleared.

instruction first run

The instruction is set to Operator control.

The instruction is set to Operator control.

Enableln is cleared

EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) 4-7

Example: This ESEL instruction selects In1, In2, or In3, based on the SelectorMode. In
this example, SelectorMode = 1, which means high select. The instruction
determines which input value is the greatest and sets Out = greatest In.

Structured Text

ESEL 0l1.Inl := analog inputl;
ESEL 01.In2 := analog input2;
ESEL 01.In3 := analog input3;
ESEL 0Ol.SelectorMode := 1;
ESEL(ESEL_01);

selected value := ESEL 01.0Out;

Function Block

ESEL_01

ESEL
oo
analog_inputt 0O Enhanced Select
oo
In1 Out | selected_walue
oo [u}
analog_input2] In2 Selectedin ZID
InZ FrogQOper [0
oo [u}
analog_input3 N, d Ind Oherride [0

1

-

= FrogProgReq

w
w
!
O ProgSelectar
o
] FregOperReq
o

5 ProgOwerrideReq

Publication 1756-RM006C-EN-P - June 2003

4-8 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Switching between Program control and Operator control

The following diagram shows how the ESEL instruction changes between
Program control and Operator control.

/—\ User program sets ProgOperReq.)

Request takes precedence and is always granted. [\
Operator sets OperOperReq.
Request is granted if ProgProgReq is cleared.

y

Program Control User program sets ProgprogReq.(z) Operator Control
Request is granted if ProgOperReq is cleared.

Operator sets OperProgReq.
Request is granted if ProgOperReq is cleared.

N/ /

(1) You can lock the instruction in Operator control mode by leaving ProgOperReq set.

(2) You can lock the instruction in Program control mode by leaving ProgProgReq set while ProgOperReq is cleared.

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) 4-9

High/Low Limit (HLL)

Operands:

HLL (HLL tag);

The HLL instruction limits an analog input between two values. You can
select high/low, high, ot low limits.

Structured Text

Operand: Type: Format: Description:
HLL tag HL_LIMIT structure HLL structure

Function Block

E HLL_0O4
HLL IZI
HIL Limit Operand: Type: Format: Description:
dIn out B HLL tag HL_LIMIT structure HLL structure
Highalarm [0
Lowdlarm [0
HL_LIMIT Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0
HighLimit REAL The high limit for the Input. If HighLimit < LowLimit, the instruction sets the appropriate bit in
Status and sets Out = LowLimit.
Valid = HighLimit > LowLimit
Default = maximum positive float
LowLimit REAL The low limit for the Input. If HighLimit < LowLimit, the instruction sets the appropriate bit in
Status and sets Out = LowLimit.
Valid = LowLimit < HighLimit
Default = maximum negative float
SelectLimit DINT Select limit input. This input has three settings:

Value: Description:
0 use both limits
1 use high limit
2 use low limit

If SelectLimit is invalid, the instruction assumes SelectLimit = 0 and sets the appropriate bit
in Status.

Valid=0to 2

Default=0

Publication 1756-RM006C-EN-P - June 2003

4-10 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Output Parameter; Data Type: Description:;

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.

HighAlarm BOOL The high alarm indicator. Set when In > HighLimit.

LowAlarm BOOL The low alarm indicator. Set when In < LowLimit.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

Limitsinv (Status.1) BOOL HighLimit < LowLimit.

SelectLimitinv BOOL The value of SelectLimitis nota 0, 1, or 2.

(Status.2)

Description: The HLL instruction determines the value of the Out using these rules:

Selection: Condition: Action:
SelectLimit =0 In < HighLimit and Out=1In
(use high and low limits) In > LowLimit
In > HighLimit Out = HighLimit
HighAlarm is set
In < LowLimit Out = LowLimit
LowAlarm is set
HighLimit < LowLimit Out = LowLimit

HighAlarm is set
LowAlarm is set
Limitsinv is set

SelectLimit =1 In < HighLimit Out=1In

(use high limit only) In > HighLimit Out = HighLimit
HighAlarm is set

SelectLimit =2 In > LowLimit Out=1n

(use low limit only) In < LowLimit Out = LowLimit

LowAlarm is set

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) ~ 4-11

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

No action taken.

No action taken.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na

and the outputs

are not updated.

Enableln is set

The instruction executes.

EnableQut is set

Enableln is always set.
. The instruction executes.

postscan

No action taken.

No action taken.

Example:

This HLL instruction limits In between two values and sets HighAlarm or
LowAlarm, if needed when In is outside the limits. The instruction sets Out =
limited value of In

Structured Text

HLL 01.In := value;
HLL (HLL_01);

limited value := HLL 01.0ut;
high alarm := HLL Ol.HighAlarm;
low alarm := HLL Ol.LowAlarm;

Function Block

HLL_01
HLL |
Highs/Loww Limit . limted_value
0.0 0.0
HighAlarm 30— —_— £] high_alarm
Lovuilarm f— ——

b~ tmatam]

Publication 1756-RM006C-EN-P - June 2003

4-12 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Multiplexer (M UX) The MUX instruction selects one of eight inputs based on the selector input.
Operands:
E MUX_D4 Function Block
Mux]

Multipleser Operand: Type: Format: Description:
i In1 out [block tag MULTIPLEXER structure MUX structure
] InZ
d In3
o Ind
o Ing
O Ing
O In7
O Ing
O Selector

MULTIPLEXER Structure

Input Parameter: Data Type: Description:;

Enableln BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.
Default is set.

Inl REAL The first analog signal input to the instruction.
Valid = any float
Default = 0.0

In2 REAL The second analog signal input to the instruction.
Valid = any float
Default =0.0

In3 REAL The third analog signal input to the instruction.
Valid = any float
Default = 0.0

In4 REAL The fourth analog signal input to the instruction.
Valid = any float
Default = 0.0

In5 REAL The fifth analog signal input to the instruction.
Valid = any float
Default = 0.0

In6 REAL The sixth analog signal input to the instruction.
Valid = any float
Default =0.0

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) ~ 4-13

Input Parameter: Data Type: Description:
In7 REAL The seventh analog signal input to the instruction.
Valid = any float
Default = 0.0
In8 REAL The eighth analog signal input to the instruction.
Valid = any float
Default = 0.0
Selector DINT The selector input to the instruction. This input determines which of the inputs (1-8) is moved

into Out. If this value is invalid (which includes 0), the instruction sets the appropriate bit in
Status and holds Out at its current value.

Valid=1t0 8

Default =0

Output Parameter: Data Type:

Description:

EnableOut BOOL Enable output.
Out REAL The selected output of the algorithm. Arithmetic status flags are set for this output.
Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

Selectorlnv (Status.1) BOOL

Invalid Selector value.

Description:

Arithmetic Status Flags:
Fault Conditions:

Execution:

Based on the Selector value, the MUX instruction sets Out equal to one of
eight inputs.

Arithmetic status flags are set for the Out output.

none

Condition:

Function Block Action:

prescan

No action taken.

instruction first scan

Internal parameters are cleared.

instruction first run

No action taken.

Enableln is cleared

EnableOQut is cleared, the instruction does nothing, and the outputs are not updated.

Enableln is set

The instruction executes.
EnableQut is set.

postscan

No action taken.

Publication 1756-RM006C-EN-P - June 2003

4-14 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Example: This MUX instruction selects In1, In2, or In3, based on the Selector. The
instruction sets Out = In_ . For example, if select_value = 2, the instruction

sets Out = analog_input2.

mLE_01

L1, _I
0.0

analog_inputd — Multiplexer
oo

uln]
analog_inputz [Inz

0.0
analog_inputa N,

=
=
I

[I
I
=

oo

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

4-15

Rate Limiter (RLIM)

Operands:

RLIM(RLIM tag);

The RLIM instruction limits the amount of change of a signal over time.

Structured Text

Operand: Type: Format: Description:

RLIM tag RATE_LIMITER structure RLIM structure

Function Block

E FLIM_04
FLIk I:I
Fate Limiter Operand: Type: Format: Description:
O ln out | RLIM tag RATE_LIMITER structure RLIM structure
E| ByPas=
RATE_LIMITER Structure

Input Parameter: Data Type: Description:

Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.

In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0

IncRate REAL Maximum output increment rate in per-second units. If invalid, the instruction sets
IncRate = 0.0 and sets the appropriate bit in Status.
Valid = any float > 0.0
Default =0.0

DecRate REAL Maximum output decrement rate in per-second units. If invalid, the instruction sets
DecRate = 0.0 and sets the appropriate bit in Status.
Valid = any float > 0.0
Default = 0.0

ByPass BOOL Request to bypass the algorithm. When set, Out = In.
Default is cleared.

TimingMode DINT Selects timing execution mode.

Value; Description;

0 periodic mode

1 oversample mode

2 real time sampling mode

For more information about timing modes, see appendix Function Block Attributes.

Valid=0to 2
Default=0

Publication 1756-RM006C-EN-P - June 2003

4-16 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Input Parameter: Data Type: Description:

OversampleDT REAL Execution time for oversample mode.
Valid = 0 to 4194.303 seconds
Default =0

RTSTime DINT Module update period for real time sampling mode
Valid = 1 to 32,767ms
Default = 1

RTSTimeStamp DINT Module time stamp value for real time sampling mode.
Valid = 0 to 32,767ms
Default =0

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL

The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

IncRatelnv (Status.1) BOOL

IncRate < 0. The instruction uses 0.

DecRate (Status.2) BOOL

DecRate < 0. The instruction uses 0.

TimingModelnv BOOL Invalid TimingMode value.

(Status.27) For more information about timing modes, see appendix Function Block Attributes.
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.

(Status.29)

RTSTimeStamplnv BOOL
(Status.30)

Invalid RTSTimeStamp value.

DeltaTInv (Status.31) ~ BOOL

Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) 4-17

Description: The RLIM instruction provides separate increment and decrement rates in
pet-second units. The ByPass input lets you stop rate limiting and pass the

signal directly to the output.

Condition: Action:
ByPass is set Out, = In;,
OUtn-l = |nn
ByPass is cleared and
DeltaT >0 Slope = In,—Out, _,
DeltaT

If Slope < —DecRate then YSlope = —DecRate

If —-DecRate < Slope < IncRate then YSlope = Slope
If IncRate < Slope then YSlope = IncRate

Out,, = Out,,_; + DeltaT x YSlope

Out,,.; = Out,

where DeltaT is in seconds

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan Out,.q = In, Out,.q = In,,
instruction first run Outyq = Inj, Outyq = Iny,
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Publication 1756-RM006C-EN-P - June 2003

4-18 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Example: The RLIM instruction limits In by IncRate. If analog_input] changes at a rate
greater than the IncRate value, the instruction limits In. The instruction sets
Out = rate limited value of In.

Structured Text

RLIM 01.In := analog inputl;
RLIM 0l.Bypass := bypass;
RLIM(RLIM 01);

rate limited := RLIM 01.0ut;

Function Block

RLIM_O4

RLIM _I

Rate Limiter

0.0 0.0
analag_inputl T In Out .

I— —=] ByFa=s

™ —

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) ~ 4-19

Select (SEL) The SEL instruction uses a digital input to select one of two inputs.
Operands:
P SEL 01 Function Block
SEL |I|
elect Operand: Type: Format: Description:
int out B SEL tag SELECT structure SEL structure
o In2
] Selectarln
SELECT Structure
Input Parameter: Data Type: Description:
Enableln BOOL Enable input. If cleared, the instruction does not execute and outputs are not updated.
Default is set.
Inl REAL The first analog signal input to the instruction.
Valid = any float
Default = 0.0
In2 REAL The second analog signal input to the instruction.
Valid = any float
Default = 0.0
Selectorin BOOL The input that selects between Inl and In2.
Default is cleared.
Output Parameter; Data Type: Description;
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.

Description: The SEL instruction operates as follows:

Condition: Action:
Selectorln is set Out =In2
Selectorln is cleared Out=Inl

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions:

none

Publication 1756-RM006C-EN-P - June 2003

4-20 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Execution:

Condition: Function Block Action:
prescan No action taken.
instruction first scan No action taken.
instruction first run No action taken.
Enableln is cleared EnableQut is cleared.
Enableln is set The instruction executes.

EnableQut is set.
postscan No action taken.

Example: The SEL instruction selects In1 or In2 based on Selectorln. If SelectorIn is set,
the instruction sets Out = In,. If Selectorln is cleared, the instruction sets

Out = Iﬂl.
SEL_04
SEL I
oo
analog_inputt O Select
oo
In1 Cut] selected_result
oo
analog_input2 1 Inz
— —H Selectorln

o |
(o —

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) 4-21

Selected Negate (SNEQG)

Operands:

SNEG (SNEG_tag) ;

The SNEG instruction uses a digital input to select between the input value
and the negative of the input value.

Structured Text

Operand: Type: Format: Description:
SNEG tag SELECTABLE_NEGATE structure SNEG structure

Function Block

E SHEG_01
SHEG |Z|
Selectable Negate Operand: Type: Format: Description:
din out b SNEG tag SELECTABLE_NEGATE structure SNEG structure
] HegateEnable
SELECTABLE_NEGATE Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
NegateEnable BOOL Negate enable. When NegateEnable is set, the instruction sets Out to the negative value
of In.
Default is set.
Output Parameter; Data Type: Description:;
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
Description: The SNEG instruction operates as follows:

Condition: Action:
NegateEnable is set Out=-In
NegateEnable is cleared Out=1In

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions:

none

Publication 1756-RM006C-EN-P - June 2003

4-22 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan No action taken. No action taken.
instruction first run No action taken. No action taken.
Enableln is cleared EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.
Enableln is set The instruction executes. Enableln is always set.
EnableQut is set. The instruction executes.
postscan No action taken. No action taken.

Example: The tag negate_enable determines whether to negate In or not. The instruction
sets Out = In if NegateEnable is cleared. The instruction sets Out = —In if
NegateEnable is set.

Structured Text

SNEG 01.In := analog inputl

SNEG_0l.NegateEnable := negate enable;
SNEG (SNEG_01) ;

negate value := SNEG 01.Out;

Function Block

SHEG_01
SHEG
Selectable Megate
0.0 0.0
analag_inputl t In Out l
a —ig] MegateEnable
negate_snable [J

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) ~ 4-23

Selected Summer (SSUM)

Operands:

SSUM (SSUM_tag) ;

E SEUM_D1

In1
Selectt
InZ
Salect?
In3
Select
Ind
Selectt

A 0O @ 0 [0 @0

SSUM E

Selected Summer

Out [

The SSUM instruction uses boolean inputs to select real inputs to be

algebraically summed.

Structured Text

Operand: Type:

Format: Description:

SSUMtag SELECTABLE_SUMMER

structure SSUM structure

Function Block

Operand: Type:

Format: Description:

SSUMtag SELECTABLE_SUMMER

structure SSUM structure

SELECTABLE_SUMMER Structure

Input Parameter:

Data Type:

Description:

Enableln

BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.

If set, the instruction executes.
Default is set.

Structured Text:

No effect. The instruction executes.

Inl

REAL

The first input to be summed.
Valid = any float
Default = 0.0

Gainl

REAL

Gain for the first input.
Valid = any float
Default = 1.0

Selectl

BOOL

Selector signal for the first input.
Default is cleared.

In2

REAL

The second input to be summed.
Valid = any float
Default =0.0

Gain2

REAL

Gain for the second input.
Valid = any float
Default = 1.0

Select2

BOOL

Selector signal for the second input.
Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

4-24 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Input Parameter:

Data Type:

Description:

In3

REAL

The third input to be summed.
Valid = any float
Default = 0.0

Gain3

REAL

Gain for the third input.
Valid = any float
Default = 1.0

Select3

BOOL

Selector signal for the third input.
Default is cleared.

In4

REAL

The fourth input to be summed.
Valid = any float
Default = 0.0

Gain4

REAL

Gain for the fourth input.
Valid = any float
Default = 1.0

Select4

BOOL

Selector signal for the fourth input.
Default is cleared.

In5

REAL

The fifth input to be summed.
Valid = any float
Default =0.0

Gainb

REAL

Gain for the fifth input.
Valid = any float
Default = 1.0

Selects

BOOL

Selector signal for the fifth input.
Default is cleared.

In6

REAL

The sixth input to be summed.
Valid = any float
Default = 0.0

Gainb

REAL

Gain for the sixth input.
Valid = any float
Default = 1.0

Select6

BOOL

Selector signal for the sixth input.
Default is cleared.

In7

REAL

The seventh input to be summed.
Valid = any float
Default = 0.0

Gain7

REAL

Gain for the seventh input.
Valid = any float
Default = 1.0

Select?

BOOL

Selector signal for the seventh input.
Default is cleared.

In8

REAL

The eighth input to be summed.
Valid = any float
Default =0.0

Publication 1756-RM006C-EN-P - June 2003

Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM) ~ 4-25

Input Parameter: Data Type: Description:
Gain8 REAL Gain for the eighth input.
Valid = any float
Default =1.0
Select8 BOOL Selector signal for the eighth input.
Default is cleared.
Bias REAL Bias signal input. The instruction adds the Bias to the sum of the inputs.
Valid = any float
Default = 0.0
Output Parameter: Data Type: Description:
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.

Description: The SSUM instruction operates as follows:

Condition: Action:
No In is selected Out = Bias
In is selected 8

Out = ¥ (In,x Gain,) + Bias

n=1

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan No action taken. No action taken.
instruction first run No action taken. No action taken.
Enableln is cleared EnableOut is cleared, the instruction does nothing, na
and the outputs are not updated.
Enableln is set The instruction executes. Enableln is always set.
EnableOut is set. The instruction executes.
postscan No action taken. No action taken.

Publication 1756-RM006C-EN-P - June 2003

4-26 Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)

Example: The values of selectl and select 2 determine whether to select analogInputl
and analog_input2, respectively. The instruction then adds the selected inputs
and places the result in Out.

Structured Text

SSUM 01.Inl := analog_inputl;
SSUM _0l.Selectl := selectl;
SSUM 01.In2 := analog_ input2;
SSUM 0l.Select2 := select2;
SSUM(SSUM_01) ;

selected add := SSUM 01.0ut;

Function Block

SEUM_01

oo SEUM
analog_inputi [_I

Selected Summer

o0

. In Out [G— 0 selected_add
:| — — —] Selett

In2

oo
analeg_input2 N —] Select

0 | Inz

[
:| _] selectz

=

&

Ind
=] Selectd

Publication 1756-RM006C-EN-P - June 2003

Chapter 5

Statistical Instructions
(MAVE, MAXC, MINC, MSTD)

Introduction These statistical instructions are available:

If you want to: Use this instruction: Available in these languages: See page:

calculate a time average value. Moving Average (MAVE) structured text 5-2
function block

find the maximum signal in time. Maximum Capture (MAXC) structured text 5-6
function block

find the minimum signal in time. Minimum Capture (MINC) structured text 5-8
function block

calculate a moving standard deviation. Moving Standard Deviation structured text 5-10
(MSTD) function block

Publication 1756-RM006C-EN-P - June 2003

5-2 Statistical Instructions (MAVE, MAXC, MINC, MSTD)

Moving Average (MAVE)

Operands:

MAVE (MAVE tag, storage,weight),

E MAVE_D4

MAVE D

hloving Average

Oln Out 4
Storagedray
eightfrray

The MAVE instruction calculates a time average value for the In signal. This
instruction optionally supports user-specified weights.

Structured Text

Operand: Type: Format: Description:
MAVE tag MOVING_AVERAGE structure MAVE structure
storage REAL array holds the moving

average samples. This
array must be at least as
large as
NumberOfSamples.

weight REAL array (optional)
used for weighted
averages. This array
must be at least as large
as NumberOfSamples.
Element [0] is used for
the newest sample;
element [n] is used for
the oldest sample.

Function Block

The operands are the same as for the structured text FGEN instruction.

MOVING_AVERAGE Structure

Input Parameter: Data Type:

Description:

Enableln BOOL

Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

In REAL

The analog signal input to the instruction.
Valid = any float
Default = 0.0

InFault BOOL

Bad health indicator for the input. If In is read from an analog input, then InFault is normally
controlled by fault status on the analog input. When set, InFault indicates that the input
signal has an error, the instruction sets the appropriate bit in Status, and the instruction
holds Out at its current value. When InFault transitions from set to cleared, the instruction
initializes the averaging algorithm and continues executing.

Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

Statistical Instructions (MAVE, MAXC, MINC, MSTD) ~ 5-3

Input Parameter: Data Type: Description:

Initialize BOOL Initialize input to the instruction. When set, the instruction holds Out = In, except when
InFault is set, in which case, the instruction holds Out at its current value. When Initialize
transitions from set to cleared, the instruction initializes the averaging algorithm and
continues executing.

Default is cleared.

SampleEnable BOOL Enable for taking a sample of In. When set, the instruction enters the value of In into the
storage array and calculates a new Out value. When SampleEnable is cleared and Initialize is
cleared, the instruction holds Out at its current value.

Default is set.

NumberOfSamples DINT The number of samples to be used in the calculation. If this value is invalid, the instruction
sets the appropriate bit in Status and holds Out at its current value. When
NumberOfSamples becomes valid again, the instruction initializes the averaging algorithm
and continues executing.

Valid = 1 to (minimum size of StorageArray or WeightArray (if used))
Default =1

UseWeights BOOL Averaging scheme input to the instruction. When set, the instruction uses the weighted
method to calculate the Out. When cleared, the instruction uses the uniform method to
calculate Out.

Default is cleared.

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

InFaulted (Status.1) BOOL In health is bad (InFault is set).

NumberOfSamplinv BOOL NumberOfSamples invalid or not compatible with array size.

(Status.2)

Description: The MAVE instruction calculates a weighted or non-weighted moving average

of the input signal. The NumberOfSamples specifies the length of the moving
average span. At every scan of the block when SampleEnable is set, the
instruction moves the value of In into the storage array and discards the oldest
value. Each In, has a user configured Weight,, which is used if UseWeights is
set.

Publication 1756-RM006C-EN-P - June 2003

5-4 Statistical Instructions (MAVE, MAXC, MINC, MSTD)

The MAVE instructions uses these equations:

Condition: Equation:
weighted averaging method NumberOfSamples
UseWeights is set Out =) Weight, x In,
n =1
uniform averaging method NumberOfSamples
UseWeights is cleared ‘ P
> In,
Out = n = 1,
NumberOfSamples

The instruction will not place an invalid In value (INAN or £INF) into the
storage array. When In is invalid, the instruction sets Out = In and sets the
arithmetic overflow status flag. When In becomes valid, the instruction
initializes the averaging algorithm and continues executing,

You can make runtime changes to the NumberOfSamples parameter. If you
increase the number, the instruction incrementally averages new data from the
current sample size to the new sample size. If you decrease the number, the
instruction re-calculates the average from the beginning of the sample array to
the new NumberOfSamples value.

Initializing the averaging algorithm

Certain conditions, such as instruction first scan and instruction first run,
require the instruction to initialize the moving average algorithm. When this
occurs, the instruction considers the sample array empty and incrementally
averages samples from 1 to the NumberOfSamples value. For example:

NumberOfSamples = 3, UseWeights is set
Scan 1: Out = In, *Weight;
Scan 2: Out = (In, *Weight)+(In,_{*Weight,)
Scan 3: Out = (In,*Weight))+(In,_;*Weight,) +(In, ,*Weights;)

NumberOfSamples = 3, UseWeights is cleared
Scan 1: Out = In, /1
Scan 2: Out = (In,+1n, ¢)/2
Scan 3: Out = (In,+In, {+In, 5)/NumberOfSamples

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

Statistical Instructions (MAVE, MAXC, MINC, MSTD) ~ 5-5

Execution:

Condition: Function Block Action: Structured Text Action:

prescan No action taken. No action taken.

instruction first scan If InFault is cleared, the instruction initializes the If InFault is cleared, the instruction initializes the
algorithm and continues. algorithm and continues.

instruction first run If InFault is cleared, the instruction initializes the If InFault is cleared, the instruction initializes the
algorithm and continues. algorithm and continues.

Enableln is cleared

EnableOut is cleared, the instruction does nothing, na

and the outputs

are not updated.

Enableln is set

The instruction executes. Enableln is always set.

EnableQut is set

. The instruction executes.

postscan

No action taken.

No action taken.

Example:

Each scan, the instruction places zuput_value in array storage. The instruction
calculates the average of the values in array storage, optionally using the weight
values in array weight, and places the result in Out.

Structured Text

MAVE 03.In := input value;
MAVE (MAVE 03, ave_storage,ave weight);
ave result := MAVE 03.0ut;

Function Block

MAVE_032
A0 E I
Mloving Average
0.0 0.0

Storagefrray awe_storage

Nreightdrray ave_neight

Publication 1756-RM006C-EN-P - June 2003

5-6 Statistical Instructions (MAVE, MAXC, MINC, MSTD)

Maximum Capture (MAXC)

Operands:

MAXC (MAXC tag) ;

E MecEC_04

The MAXC instruction finds the maximum of the Input signal over time.

Structured Text

Operand: Type: Format: Description:

MAXCtag MAXIMUM_CAPTURE structure MAXC structure

Function Block

(A EI
Masimum Capture Operand: Type: Format: Description:
dln aut MAXC tag MAXIMUM_CAPTURE structure MAXC structure
] Reset
] ResetWValue
MAXIMUM_CAPTURE Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0
Reset BOOL Request to reset control algorithm. The instruction sets Out = ResetValue as long as Reset
is set.
Default is cleared.
ResetValue REAL The reset value for instruction. The instruction sets Out = ResetValue as long as Reset is set.
Valid = any float
Default = 0.0
Output Parameter: Data Type: Description:
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
Description: The MAXC instruction executes this algorithm:

Publication 1756-RM006C-EN-P - June 2003

Condition: Action:

Reset is set Out,,.; = ResetValue
Out = ResetValue

Reset is cleared Out = In when In > Out,, 4
Out = Out,,.; when In < Out,;
Out,.; = Out

Statistical Instructions (MAVE, MAXC, MINC, MSTD) ~ 5-7

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions:

none

Execution:
Condition: Action: Action:
prescan No action taken. No action taken.
instruction first scan Out,. =1In Out,. =1In
instruction first run Outyq =1In Outyq =1In
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: If Reset is set, the instruction sets Out = ResetValue. If Reset is cleared, the

instruction sets Out = In when
Out = Out, ;.

Structured Text

In > Out, ;. Otherwise, the instruction sets

MAXC 01.In := input value;

MAXC Ol.Reset := reset input;

MAXC Ol.ResetValue := reset value;

MAXC (MAXC_01) ;

maximum := MAXC 01.0ut;

Function Block

MAXC_04

oo
T
u}
-

1)

hAXC _I

hdaximum Capture

oo

Reset

ResetWalue

oo
e

Publication 1756-RM006C-EN-P - June 2003

5-8 Statistical Instructions (MAVE, MAXC, MINC, MSTD)

Minimum Capture (MINC)

Operands:

MINC (MINC tag);

E MING_01

The MINC instruction finds the minimum of the Input signal over time.

Structured Text

Operand: Type: Format: Description:

MINC tag MINIMUM_CAPTURE structure MINC structure

Function Block

hAINC EI
Minimum Capture Operand: Type: Format: Description:
din outh MINC tag MINIMUM_CAPTURE structure MINC structure
] Reset
H Resetiialue MINIMUM_CAPTURE Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0
Reset BOOL Request to reset control algorithm. The instruction sets Out = ResetValue as long as Reset
is set.
Default is cleared.
ResetValue REAL The reset value for instruction. The instruction sets Out = ResetValue as long as Reset is set.
Valid = any float
Default = 0.0
Output Parameter: Data Type: Description:
EnableOut BOOL Enable output.
Out REAL The calculated output of the algorithm. Arithmetic status flags are set for this output.
Description: The MINC instruction executes this algorithm:

Publication 1756-RM006C-EN-P - June 2003

Condition: Action:

Reset is set Out,,.; = ResetValue
Out = ResetValue

Reset is cleared Out = In when In < Out, 4
Out = Out,,.; when In > Out,;
Out,.; = Out

Statistical Instructions (MAVE, MAXC, MINC, MSTD) ~ 5-9

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan Out,.1 =1In Out,.1 =1In
instruction first run Outyq =1In Outyq =1In
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: If Reset is set, the instruction sets Out = ResetValue. If Reset is cleared, the
instruction sets Out = In when In < Out,_;. Otherwise, the instruction sets

Out = OutnAl‘

Structured Text

MINC 01.In := input value;

MINC Ol.Reset := reset input;

MINC Ol.ResetValue :=

MINC (MINC_01);

reset value;

minimum := MINC 01.0ut;

Function Block

oo

T
1]
e —

oo

rezet walue [

14]

MINC_04

MINC _I

Mlinimum Capture

.o

Resat

Rezetifalue

Publication 1756-RM006C-EN-P - June 2003

5-10 Statistical Instructions (MAVE, MAXC, MINC, MSTD)

Movi ng Standard Deviation The MSTD instruction calculates a moving standard deviation and average for

(MSTD) the In signal.

Operands:
Structured Text
MSTD (MSTD tag, storage) ; -
- Operand: Type: Format: Description:
MSTD tag MOVING_STD_DEV structure MSTD structure
storage REAL array holds the In samples.

This array must be at
least as large as

NumberOfSamples.
P MSTD_ D1 Function Block
METD |:I
Moving Standard Deviation Operand: Type: Format: Description:
ddin out b MSTD tag MOVING_STD_DEV structure MSTD structure
Ef SampleEnable storage REAL array holds the In samples.
Storagedray This array must be at
least as large as
NumberOfSamples.
MOVING_STD_DEV Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
In REAL The analog signal input to the instruction.
Valid = any float
Default = 0.0
InFault BOOL Bad health indicator for the input. If In is read from an analog input, then InFault is normally

controlled by fault status on the analog input. When set, InFault indicates that the input
signal has an error, the instruction sets the appropriate bit in Status, and the instruction
holds Out and Average at their current values. When InFault transitions from set to cleared,
the instruction initializes the averaging algorithm and continues executing.

Default is cleared.

Publication 1756-RM006C-EN-P - June 2003

Statistical Instructions (MAVE, MAXC, MINC, MSTD) ~ 5-11

Input Parameter: Data Type: Description:

Initialize BOOL Initialize input to the instruction. When set, the instruction sets Out = 0.0 and Average = In,
except when InFault is set, in which case, the instruction holds both Out and Average at their
current values. When Initialize transitions from set to cleared, the instruction initializes the
standard deviation algorithm and continues executing.

Default is cleared.

SampleEnable BOOL Enable for taking a sample of In. When set, the instruction enters the value of In into the
storage array and calculates a new Out and Average value. When SampleEnable is cleared
and Initialize is cleared, the instruction holds Out and Average at their current values.
Default is cleared.

NumberOfSamples DINT The number of samples to be used in the calculation. If this value is invalid, the instruction
sets the appropriate bit in Status and the instruction holds Out and Average at their current
values. When NumberOfSamples becomes valid again, the instruction initializes the
standard deviation algorithm and continues executing.

Valid = 1 to size of the storage array
Default =1

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Out REAL The calculated output of the algorithm. The instruction holds Out at its current value when
SampleEnable is cleared. Arithmetic status flags are set for this output.

Average REAL The calculated average of the algorithm.

Status DINT Status of the function block.

InstructFault (Status.0) BOOL The instruction detected one of the following execution errors. This is not a minor or major
controller error. Check the remaining status bits to determine what occurred.

InFaulted (Status.1) BOOL In health is bad. InFault is set.

NumberOfSamplinv BOOL NumberOfSamples invalid or not compatible with array size.

(Status.2)

Description: The MSTD instruction supports any input queue length. Each scan, if

SampleEnable is set, the instruction enters the value of In into a storage array.
When the storage array is full, each new value of In causes the oldest entry to

be deleted.

The MSTD instructions uses these equations for the outputs:

Condition: Equals:
Average NumberOfSamples[n
Average = -l
NumberOfSamples
Out
NumberOfSamples 2
DI In —Average
o / " (In, ~Average)
NumberOfSamples

Publication 1756-RM006C-EN-P - June 2003

5-12 Statistical Instructions (MAVE, MAXC, MINC, MSTD)

NumberOfSamples = 3
Scan 1: Average = In_ /1

The instruction will not place an invalid In value (INAN or £INF) into the
storage array. When In is invalid, the instruction sets Out = In, sets

Average = In, and sets the arithmetic overflow status flag. When In becomes
valid, the instruction initializes the standard deviation algorithm and continues
executing.

You can make runtime changes to the NumberOfSamples parameter. If you
increase the number, the instruction incrementally processes new data from
the current sample size to the new sample size. If you decrease the number,
the instruction re-calculates the standard deviation from the beginning of the
sample array to the new NumberOfSamples value.

Initializing the standard deviation algorithm

Certain conditions, such as instruction first scan and instruction first run,
require the instruction to initialize the standard deviation algorithm. When this
occurs, the instruction considers the sample array empty and incrementally
processes samples from 1 to the NumberOfSamples value. For example:

Out = Squate root (((Inn—Average)Z)/ 1)

Scan 2: Average = (In,+In, 4)/2

Out = Square root (((Inn—Average)Z-i- (Inn_l—Average)Z) /2)

Scan 3: Average = (In,+In, {+In, 5)/NumberOfSamples

Out = Square root (((Inn—Average)2 +(In, ¢ —Average)2+ (Inn_Z—Average)Z) /NumberOfSamples)

Arithmetic Status Flags: Arithmetic status flags are set for the Out output.

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

Statistical Instructions (MAVE, MAXC, MINC, MSTD)

5-13

Execution:
Condition: Function Block Action: Structured Test Action:
prescan No action taken. No action taken.

instruction first scan

If InFault is cleared, the instruction initializes the
algorithm and continues.

If InFault is cleared, the instruction initializes the
algorithm and continues.

instruction first run

If InFault is cleared, the instruction initializes the
algorithm and continues.

If InFault is cleared, the instruction initializes the
algorithm and continues.

Enableln is cleared

EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: FEach scan that SampleEnable is set, the instruction places the value of In into
array storage, calculates the standard deviation of the values in array storage,

and places the result in Out.
Structured Text

MSTD 0l1.In :=
MSTD Ol.Sample enable

input value;

:= enable sample;

MSTD (MSTD_ 01, stand dev) ;

deviation := MSTD 01.0ut;

Function Block

METD_01

oo
T

)
enable_sample o —

In

SampleEnable
Storagefrray

hdowing Standard Dewiation

MSTD [

.o

stand_dew

Publication 1756-RM006C-EN-P - June 2003

5-14 Statistical Instructions (MAVE, MAXC, MINC, MSTD)

Notes:

Publication 1756-RM006C-EN-P - June 2003

Chapter 6

Move/Logical Instructions
(DFF, JKFF, RESD, SETD)

Introduction These move/logical instructions are available:

If you want to: Use this instruction: Available in these languages: See page:
set the Q output to the state of the D input ona D Flip-Flop (DFF) structured text 6-2
transition of the Clock input. function block

complement the Q and QNot outputs when the JK Flip-Flop (JKFF) structured text 6-4
Clock input transitions. function block

use Set and Reset inputs to control latched Reset Dominant (RESD) structured text 6-6
outputs when the Reset input has precedence function block

over the Set input.

use Set and Reset inputs to control latched Set Dominant (SETD) structured text 6-8
outputs when the Set input has precedence function block

over the Reset input.

Publication 1756-RM006C-EN-P - June 2003

6-2 Move/Logical Instructions (DFF, JKFF, RESD, SETD)

DFhi p_FIOp (DFF) The DFF instruction sets the Q output to the state of the D input on a cleared
to set transition of the Clock input. The QNot output is set to the opposite
state of the Q output.

Operands:
DFF (DFF_tag) ; Structured Text
Operand: Type: Format: Description:
DFF tag FLIP_FLOP_D structure DFF structure
E BFF_04 Function Block
DFF =
D Flip Flop Operand: Type: Format: Description:
(] =i} DFF tag FLIP_FLOP_D structure DFF structure
=] Clear QMot [0
= Clock
FLIP_FLOP_D Structure
Input Parameter: Data Type: Description:;
Enableln BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

D BOOL The input to the instruction.
Default is cleared.

Clear BOOL Clear input to the instruction. If set, the instruction clears Q and sets QNot.
Default is cleared.

Clock BOOL Clock input to the instruction.
Default is cleared.

Output Parameter: Data Type: Description:

EnableOut BOOL Enable output.

Q BOOL The output of the instruction.

QNot BOOL The complement of the Q output.

Description: When Clear is set, the instruction clears Q and sets QNot. Otherwise, if Clock
is set and Clock,, 4 is cleared, the instruction sets Q = D and sets QNot =

NOT (D).

The instruction sets Clock, ; = Clock state every scan.

Arithmetic Status Flags: not affected

Publication 1756-RM006C-EN-P - June 2003

Move/Logical Instructions (DFF, JKFF, RESD, SETD)

6-3

Fault Conditions:

none

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan Clocky; is set Clocky,; is set

Qs cleared Qs cleared

QNot is set QNot is set
instruction first run Clock,.; is set Clock,.; is set

Qs cleared Qs cleared

QNot is set QNot is set
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: When Clock goes from cleared to set, the DFF instruction sets Q = D. When
Clear is set, Q is cleared. The DFF instruction sets QNot to the opposite state

of Q.

Structured Text

DFF 01.D := d_input;

DFF 0l.Clear := clear input;

DFF 0l1.Clock

DFF (DFF_01) ;

g_output := DFF 01.0Q;

clock input;

gnot output := DFF 01.QNot;

Function Block

]
o

u]

clear_input o

=

clodi_input [

DFF_01
DFF |
| D Flip Flop
u]
L o] Q jD— — £l q_cutput
—— ——F] Clear QMot —ry —
Clack |— £ qnot_output

|_"I

Publication 1756-RM006C-EN-P - June 2003

6-4 Move/Logical Instructions (DFF, JKFF, RESD, SETD)

JK FI |p_F|Op (J KFF) The JKFF instruction complements the Q and QNot outputs when the Clock
input transitions from cleared to set.
Operands:
JKFF (JKFF_tag) ; Structured Text
Operand: Type: Format: Description:
JKFF tag FLIP_FLOP_JK structure JKFF structure
E JEE_O1 Function Block
JEFF E
JK Flip Flop Operand: Type: Format: Description:
o Clear ol JKFF tag FLIP_FLOP_JK structure JKFF structure
[Clodk QMot [
FLIP_FLOP_JK Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.
Clear BOOL Clear input to the instruction. If set, the instruction clears Q and sets QNot.
Default is cleared.
Clock BOOL Clock input to the instruction.
Default is cleared.
Output Parameter; Data Type: Description:;
EnableOut BOOL Enable output.
Q BOOL The output of the instruction.
QNot BOOL The complement of the Q output.

Description: When Clear is set, the instruction clears Q and sets QNot. Otherwise, if Clock
is set and Clock,, 4 is cleared, the instruction toggles QQ and QNot.

The instruction sets Clock, ; = Clock state every scan.
Arithmetic Status Flags: not affected

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

Move/Logical Instructions (DFF, JKFF, RESD, SETD)

6-5

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.
instruction first scan Clocky; is set Clocky,; is set

Qs cleared Qs cleared

QNot is set QNot is set
instruction first run Clock,.; is set Clock,.; is set

Qs cleared Qs cleared

QNot is set QNot is set
Enableln is cleared EnableOut is cleared, the instruction does nothing, na

and the outputs are not updated.

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: When Clock goes from cleared to set, the JKFF instruction toggles Q. If Clear

is set, Q is always cleared. The JKFF instruction sets QNot to the opposite

state of Q.

Structured Text

JKFF 0l.Clear

clear input;

JKFF 01.Clock := clock input;

JKFF (JKFF_01) ;

g _output := JKFF _01.Q;

gnot output := JKFF 01.QNot;

Function Block

u]

T

I——E

o |
clock_input o,

JKFF_0A
JKFF |
JK Flip Flop
u}
Clear [n] :il:l— —_— 3 q_output
Clock OHot f— —

|— El qnot_output

Publication 1756-RM006C-EN-P - June 2003

6-6 Move/Logical Instructions (DFF, JKFF, RESD, SETD)

Reset Dominant (RESD) The RESD instruction uses Set and Reset inputs to control latched outputs.
The Reset input has precedence over the Set input.
Operands:
RESD (RESD_tag) ; Structured Text
Operand: Type: Format: Description:
RESD tag DOMINANT_RESET structure RESD structure
E RESE._01 Function Block
RESD B
Reset Daminant Operand: Type: Format: Description:
£ Set Out [RESD tag DOMINANT_RESET structure RESD structure
=] Resat Dutlot [0

DOMINANT_RESET Structure

Input Parameter: Data Type: Description:

Enableln BOOL Function Block:
If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.
Default is set.
Structured Text:
No effect. The instruction executes.

Set BOOL Set input to the instruction.
Default is cleared.

Reset BOOL Reset input to the instruction.
Default is cleared.
Output Parameter; Data Type: Description:;
EnableOut BOOL Enable output.
Out BOOL The output of the instruction.
OutNot BOOL The inverted output of the instruction.

Description: The following diagram illustrates how the RESD instruction operates

Set is set and Reset is cleared

Out is cleared Out is set

OutNot is set Reset is set OutNot is cleared

Arithmetic Status Flags: not affected

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

Move/Logical Instructions (DFF, JKFF, RESD, SETD) 6-7

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

Out is cleared.
OutNot is set.

Out is cleared.
OutNot is set.

Enableln is cleared

EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: When Set is set, Out is set; when Reset is set, Out is cleared. Reset has

precedence over Set.

Structured Text

RESD 0l.Set := set input;

RESD 0Ol.Reset := reset input;

RESD (RESD 01) ;
output := RESD 01.0ut;

not output := RESD 01.OutNot;

Function Block

u]
[setineut o— —e

a
T

RESD_0O1
RESD J
Rezet Dominant

u}

Set Out fF— —] output
—— el output]

Reset OutMot F—

| =] not_output

Publication 1756-RM006C-EN-P - June 2003

6-8 Move/Logical Instructions (DFF, JKFF, RESD, SETD)

Set Dominant (SETD) The SETD instruction uses Set and Reset inputs to control latched outputs.
The Set input has precedence over the Reset input.
Operands:
SETD (SETD_tag) ; Structured Text
Operand: Type: Format: Description:
SETD tag DOMINANT_SET structure SETD structure
E SETD_01 Function Block
SETD |II
Set Dominant Operand: Type: Format: Description:
] Set dut [SETD tag DOMINANT_SET structure SETD structure
] Reset Outhot [
DOMINANT _SET Structure
Input Parameter: Data Type: Description:
Enableln BOOL Function Block:

If cleared, the instruction does not execute and outputs are not updated.
If set, the instruction executes.

Default is set.

Structured Text:

No effect. The instruction executes.

Set BOOL Set input to the instruction.
Default is cleared.

Reset BOOL Reset input to the instruction.
Default is cleared.
Output Parameter; Data Type: Description:;
EnableOut BOOL Enable output.
Out BOOL The output of the instruction.
OutNot BOOL The inverted output of the instruction.

Description: The following diagram illustrates how the SETD instruction operates

Set is set

Out is cleared Out is set
OutNot is set Reset is set and Set is cleared OutNot is cleared

Arithmetic Status Flags: not affected

Fault Conditions: none

Publication 1756-RM006C-EN-P - June 2003

Move/Logical Instructions (DFF, JKFF, RESD, SETD)

Execution:
Condition: Function Block Action: Structured Text Action:
prescan No action taken. No action taken.

instruction first scan

No action taken.

No action taken.

instruction first run

Out is set.
OutNot is cleared.

Out is set.
OutNot is cleared.

Enableln is cleared

EnableOut is cleared, the instruction does nothing,
and the outputs are not updated.

na

Enableln is set

The instruction executes.
EnableQut is set.

Enableln is always set.
The instruction executes.

postscan

No action taken.

No action taken.

Example: When Set is set, Out is set; when Reset is set, Out is cleared. Set has

precedence over Reset.

Structured Text

SETD 0l.Set := set input;

SETD 0l.Reset := reset input;

SETD (SETD_01) ;

output := SETD 01.0ut;

not output := SETD 01.OutNot;

Function Block

u}
ELT L

|

SETD_0A

SETD _I

Set Dominant

u]
auip e o]
u}

Reset CutMot [— |
=] not_output

Publication 1756-RM006C-EN-P - June 2003

6-10 Move/Logical Instructions (DFF, JKFF, RESD, SETD)

Notes:

Publication 1756-RM006C-EN-P - June 2003

Appendix A

Function Block Attributes

Introduction This appendix describes issues that are unique with function block
instructions. Review the information in this appendix to make sure you
understand how your function block routines will operate.

IMPORTANT When programming in function block, restrict the range of engineering

units to +/ 1077713 because internal floating point calculations are done
using single precision floating point. Engineering units outside of this range
may result in a loss of accuracy if results approach the limitations of single

precision floating point (+ /-10+/ —38)‘

Choose the Function Block To control a device, use the following elements:
Elements

input reference (IREF) function block output reference (OREF)

¢ d = l

| 3___r{iZZZZ]
DJ D_L(:] <+— output wire

connector
(OCON)

input wire 4T

connector
(ICON)

Publication 1756-RM006C-EN-P - June 2003

A-2 Function Block Attributes

Use the following table to choose your function block elements:z

If you want to: Then use a:
supply a value from an input device or tag input reference (IREF)
send a value to an output device or tag output reference (OREF)

perform an operation on an input value or values and ~ function block
produce an output value or values

transfer data between function blocks when they output wire connector (OCON) and an input wire

are:

connector (ICON)

o far apart on the same sheet
e on different sheets within the same routine

disperse data to several points in the routine single output wire connector (OCON) and multiple

input wire connectors (ICON)

Latching Data

Publication 1756-RM006C-EN-P - June 2003

If you use an IREF to specify input data for a function block instruction, the
data in that IREF is latched for the scan of the function block routine. The
IREF latches data from program-scoped and controller-scoped tags. The
controller updates all IREF data at the beginning of each scan.

[

REF—» [»— u]
d

In this example, the value of tagA is stored at the beginning of the routine’s
execution. The stored value is used when Block 01 executes. The same stored
value is also used when Blcock_02 executes. If the value of tagA changes
during execution of the routine, the stored value of tagA in the IREF does not
change until the next execution of the routine.

Block_01

[

[-

Block_02

[

Function Block Attributes A-3

This example is the same as the one above. The value of tagA is stored only
once at the beginning of the routine’s execution. The routine uses this stored
value throughout the routine.

Block_01

[

g

d

Block_02

[

s

w

Starting with RSLogix 5000 software, version 11, you can use the same tag in
multiple IREFs and an OREF in the same routine. Because the values of tags
in IREFs are latched every scan through the routine, all IREFs will use the
same value, even if an OREF obtains a different tag value during execution of
the routine. In this example, if tagA has a value of 25.4 when the routine starts
executing this scan, and Block_01 changes the value of tagA to 50.9, the
second IREF wired into Block_02 will still use a value of 25.4 when Block_02
executes this scan. The new tagA value of 50.9 will not be used by any IREFs
in this routine until the start of the next scan.

Block_01

Blod 02

-

Publication 1756-RM006C-EN-P - June 2003

A-4 Function Block Attributes

Order of Execution

Publication 1756-RM006C-EN-P - June 2003

The RSLogix 5000 programming software automatically determines the order
of execution for the function blocks in a routine when you:

e verify a function block routine
e verify a project that contains a function block routine

e download a project that contains a function block routine

You define execution order by wiring function blocks together and indicating
the data flow of any feedback wires, if necessary.

If function blocks are not wired together, it does not matter which block
executes first. There is no data flow between the blocks.

= = =

If you wire the blocks sequentially, the execution order moves from input to
output. The inputs of a block require data to be available before the controller
can execute that block. For example, block 2 has to execute before block 3
because the outputs of block 2 feed the inputs of block 3.

D—CJ—CJ—CD—G

Execution order is only relative to the blocks that are wired together. The
following example is fine because the two groups of blocks are not wired
together. The blocks within a specific group execute in the appropriate order
in relation to the blocks in that group.

Function Block Attributes A-5

Resolve a Loop

To create a feedback loop around a block, wire an output pin of the block to
an input pin of the same block. The following example is OK. The loop
contains only a single block, so execution order does not matter

| |
This input pin uses an output that (a]
the block produced on the = —
previous scan. —————— = |
- - 1

If a group of blocks are in a loop, the controller cannot determine which block
to execute first. In other words, it cannot resolve the loop.

D_l_c': B— o—d 3—-._.;(:|

To identify which block to execute first, mark the input wire that creates the
loop (the feedback wire) with the Assume Data Available indicator. In the
following example, block 1 uses the output from block 3 that was produced in
the previous execution of the routine.

This input pin uses the output ————p»
that block 3 produced on the
previous scan.

Assume Data Available indicator

The Assume Data Available indicator defines the data flow within the loop. The
arrow indicates that the data serves as input to the first block in the loop.

Publication 1756-RM006C-EN-P - June 2003

A-6 Function Block Attributes

Do not mark all the wires of a loop with the Assume Data Available indicator.

This is OK This is NOT OK

q — E— q 3—@) ——
g ﬁ =
The controller cannot resolve the loop because all the wires use the

Assume Data Available Assume Data Available indicator.
indicator

The Assume Data Available indicator defines the data flow within

the loop.
Resolve Data Flow Between Two Blocks
If you use two or more wires to connect two blocks, use the same data flow
indicators for all of the wires between the two blocks.
This is OK This is NOT OK
> = :u'_ =l > i x [
(= B— —0] = F— —g]
dJ b—— | g E——]
fa d I
Neither wire uses the Assume Data Available indicator. One wire uses the Assume Data Available indicator while the other
wire does not.
> ml L =l
= B — m
[m |
Assume Data Available
indicator
Both wires use the Assume Data Available indicator.

Publication 1756-RM006C-EN-P - June 2003

Function Block Attributes A-7

Function Block Responses
to Overflow Conditions

Create a One Scan Delay

To produce a one scan delay between blocks, use the Assume Data Available
indicator. In the following example, block 1 executes first. It uses the output
from block 2 that was produced in the previous scan of the routine.

O :I—‘@ |

Assume Data Available indicator

Summary

In summary, a function block routine executes in this order:
1. The controller latches all data values in IREFs.

2. The controller executes the other function blocks in the order
determined by how they are wired.

3. The controller writes outputs in OREFs.

In general, the function block instructions that maintain history do not update
history with ZNAN, or £INF values when an overflow occurs. Each
instruction has one of these responses to an overflow condition:

Publication 1756-RM006C-EN-P - June 2003

A-8 Function Block Attributes

Response 1 Response 2: Response 3:
Blocks execute their algorithm and check Blocks with output limiting execute their The overflow condition does not apply. These
the result for =NAN or £INF. If =NAN or algorithm and check the result for =NAN or instructions typically have a boolean output.
TINF, the block outputs =NAN or £INF. TINF. The output limits are defined by the

HighLimit and LowLimit input parameters.

If ZINF, the block outputs a limited result.

If =NAN, the output limits are not used and

the block outputs £NAN.
ALM NTCH HLL BAND OSRI
DEDT PMUL INTG BNOT RESD
DERV POSP PI BOR RTOR
ESEL RLIM PIDE BXOR SETD
FGEN RMPS SCL CUTD TOFR
HPF SCRV SoC D2SD TONR
LDL2 SEL D3SD
LDLG SNEG DFF
LPF SRTP JKFF
MAVE SSUM OSFI
MAXC TOT
MINC UPDN
MSTD
MUX

Publication 1756-RM006C-EN-P - June 2003

Function Block Attributes A-9

Timing Modes These process control and drives instructions support different timing modes.
DEDT LDLG RLIM
DERV LPF SCRV
HPF NTCH SOC
INTG PI TOT
LDI.2 PIDE
There are three different timing modes:
Timing Mode: Description:
periodic Periodic mode is the default mode and is suitable for most control applications. We recommend that you place
the instructions that use this mode in a routine that executes in a periodic task. The delta time (DeltaT) for the
instruction is determined as follows:
If the instruction Then DeltaT equals:
executes in a:
periodic task period of the task
Set the period of the task to whole milliseconds (ms). For DeltaT, the controller
truncates any fractional portion of the task's period. For example, if the period of that
task = 10.5 ms, the controller sets DeltaT = 10 ms.
If you want to use a fractional value for the period of a task, use the oversample
timing mode. With the oversample timing mode, set the OversampleDT parameter =
period of the task, including any fractional value.
event or continuous elapsed time since the previous execution
task
The controller truncates the elapsed time to whole milliseconds (ms). For example, if
the elapsed time = 10.5 ms, the controller sets DeltaT = 10 ms.
The update of the process input needs to be synchronized with the execution of the task or sampled 5-10 times
faster than the task executes in order to minimize the sampling error between the input and the instruction.
oversample In oversample mode, the delta time (DeltaT) used by the instruction is the value written into the OversampleDT

parameter of the instruction. Use this mode when the instruction executes in an event or continuous task and
the process input does not have a time stamp associated with its updates. If the process input has a time
stamp value, use the real time sampling mode instead.

Add logic to your program to control when the instruction executes. For example, you can use a timer set to the
OversampleDeltaT value to control the execution by using the Enableln input of the instruction.

The process input needs to be sampled 5-10 times faster than the instruction is executed in order to minimize
the sampling error between the input and the instruction.

Publication 1756-RM006C-EN-P - June 2003

A-10 Function Block Attributes

Timing Mode: Description:

real time sampling In the real time sampling mode, the delta time (DeltaT) used by the instruction is the difference between two
time stamp values that correspond to the updates of the process input. Use this mode when the instruction
executes in an event or continuous task and the process input has a time stamp associated with its updates.

The time stamp value is read from the tag name entered for the RTSTimeStamp parameter of the instruction.
Normally this tag name is a parameter on the input module associated with the process input.

The instruction compares the configured RTSTime value (expected update period) against the calculated
DeltaT to determine if every update of the process input is being read by the instruction. If DeltaT is not within
1 millisecond of the configuration time, the instruction sets the RTSMissed status bit to indicate that a
problem exists reading updates for the input on the module.

Time-based instructions require a constant value for DeltaT in order for the
control algorithm to properly calculate the process output. If DeltaT varies, a
discontinuity occurs in the process output. The severity of the discontinuity
depends on the instruction and range over which DeltaT varies. A
discontinuity occurs if the:

e instruction is not executed during a scan.
e instruction is executed multiple times during a task.

e task is running and the task scan rate or the sample time of the process
input changes.

e user changes the time base mode while the task is running;

® Order parameter is changed on a filter block while the task is running,
Changing the Order parameter selects a different control algorithm
within the instruction.

Publication 1756-RM006C-EN-P - June 2003

Function Block Attributes A-11

Common instruction parameters for timing modes

The instructions that support time base modes have these input and output
parameters:

Input parameters

Input Parameter:

Data Type:

Description:

TimingMode

DINT

Selects timing execution mode.

Value: Description:

0 periodic mode

1 oversample mode

2 real time sampling mode

valid=0to 2
default=0

When TimingMode = 0 and task is periodic, periodic timing is enabled and DeltaT is set to
the task scan rate. When TimingMode = 0 and task is event or continuous, periodic timing is
enabled and DeltaT is set equal to the elapsed time span since the last time the instruction
was executed.

When TimingMode = 1, oversample timing is enabled and DeltaT is set to the value of the
OversampleDT parameter.

When TimingMode = 2, real time sampling timing is enabled and DeltaT is the difference
between the current and previous time stamp values read from the module associated with
the input.

If TimingMode invalid, the instruction sets the appropriate bit in Status.

OversampleDT

REAL

Execution time for oversample timing. The value used for DeltaT is in seconds. If
TimingMode = 1, then OversampleDT = 0.0 disables the execution of the control algorithm. If
invalid, the instruction sets DeltaT = 0.0 and sets the appropriate bit in Status.

valid = 0 to 4194.303 seconds

default = 0.0

RTSTime

DINT

Module update period for real time sampling timing. The expected DeltaT update period is in
milliseconds. The update period is normally the value that was used to configure the
module’s update time. If invalid, the instruction sets the appropriate bit in Status and
disables RTSMissed checking.

valid = 1 to 32,767ms

default =1

RTSTimeStamp

DINT

Module time stamp value for real time sampling timing. The time stamp value that
corresponds to the last update of the input signal. This value is used to calculate DeltaT. If
invalid, the instruction sets the appropriate bit in Status, disables execution of the control
algorithm, and disables RTSMissed checking.

valid =1 to 32,767ms (wraps from 32767 to 0)
1 count = 1 millisecond
default =0

Publication 1756-RM006C-EN-P - June 2003

A-12 Function Block Attributes

Output parameters

Output Parameter: Data Type:

Description:

DeltaT REAL Elapsed time between updates. This is the elapsed time in seconds used by the control
algorithm to calculate the process output.
Periodic: DeltaT = task scan rate if task is Periodic task, DeltaT = elapsed time since previous
instruction execution if task is Event or Continuous task
Oversample: DeltaT = OversampleDT
Real Time Sampling: DeltaT = (RTSTimeStampy, - RTSTimeStampy,.4)
Status DINT Status of the function block.
TimingModelnv BOOL Invalid TimingMode value.
(Status.27)
RTSMissed (Status.28) BOOL Only used in real time sampling mode. Set when ABS | DeltaT - RTSTime | > 1 (.001 second).
RTSTimelnv BOOL Invalid RTSTime value.
(Status.29)

RTSTimeStamplnv BOOL
(Status.30)

Invalid RTSTimeStamp value.

DeltaTInv (Status.31) BOOL

Invalid DeltaT value.

Publication 1756-RM006C-EN-P - June 2003

Function Block Attributes A-13

Overview of timing modes

The following diagram shows how an instruction determines the appropriate
timing mode.

v

Determine time base mode

TimingMode =0 TimingMode =1 TimingMode =2

C Periodic timing > < Oversample timing > (Real time timing >

DeltaT = OversampleDT DeltaT = RTSTimeStamp,, - RTSTimeStamp,,.4

If DeltaT < 0 or DeltaT > 4194.303 secs. | ||f DeltaT > 0, the instruction executes.
the instruction sets DeltaT = 0.0 and sets
the appropriate bit in Status. If RTSTIME - DeltaT| > 1, the instruction sets RTSMissed

v bit in Status.
If DeltaT > 0, the instruction executes.

Determine task type

v

C Periodic task > (Non-periodic task >

DeltaT = task scan time DeltaT = elapsed time since last execution

If DeltaT > 0, the instruction executes. If DeltaT > 0, the instruction executes.

Publication 1756-RM006C-EN-P - June 2003

A-14 Function Block Attributes

Program/Operator Control

Publication 1756-RM006C-EN-P - June 2003

Several instructions support the concept of Program/Operator control. These
instructions include:

e Enhanced Select (ESEL)

e Totalizer (TOT)

e Enhanced PID (PIDE)

e Ramp/Soak (RMPS)

e Discrete 2-State Device (D2SD)
e Discrete 3-State Device (D3SD)

Program/Operator control lets you control these instructions simultaneously
from both your user program and from an operator interface device. When in
Program control, the instruction is controlled by the Program inputs to the
instruction; when in Operator control, the instruction is controlled by the
Operator inputs to the instruction.

Program or Operator control is determined by using these inputs:

Input; Description:

.ProgProgReq A program request to go to Program control.
.ProgOperReq A program request to go to Operator control.
.OperProgReq An operator request to go to Program control.
.OperOperReq An operator request to go to Operator control.

To determine whether an instruction is in Program or Control control,
examine the ProgOper output. If ProgOper is set, the instruction is in
Program control; if ProgOper is cleared, the instruction is in Operator control.

Operator control takes precedence over Program control if both input request
bits are set. For example, if ProgProgReq and ProgOperReq are both set, the
instruction goes to Operator control.

Function Block Attributes A-15

Leeal:1:.ChOData l

The Program request inputs take precedence over the Operator request inputs.
This provides the capability to use the ProgProgReq and ProgOperReq inputs

to “lock” an instruction in a desired control. For example, let’s assume that a
Totalizer instruction will always be used in Operator control, and your user
program will never control the running or stopping of the Totalizer. In this
case, you could wire a literal value of 1 into the ProgOperReq. This would
prevent the operator from ever putting the Totalizer into Program control by
setting the OperProgReq from an operator interface device.

[
- —— —=| ProgOperReq

Wiring a “1” into ProgOperReq means
the user program always wants the
TOT to be in Operator control

TOT_0M
TOT B
Totalizer

In Total [—
FrogPragReq OldTotal o
FrogQper 0
= FrogStartReq RunStop [
=] F topReq FrogReszethone [0
£] FrogResetReq TargetFlag [0
TargetDeviFlag @
TargetDevZFlag @

Totalizer : program:MainProgram.TOT_01

Total: 403.282 gallons |Mode:
Old Tatal: 0 gallons |Operatar
Input: 59.07 galfmin (Run
Target Programﬁ:
500 —Dey 2
—Dev 1 Operatar |
Start |
Stop |
Reset |
a
Reset
o Detail.._|
Status: Ok

Because the ProgOperReq input is
always set, pressing the “Program”
button on the faceplate (which sets
the OperProgReg input) has no effect.
Normally, setting OperProgReq puts
the TOT in Program control.

Publication 1756-RM006C-EN-P - June 2003

A-16 Function Block Attributes

Publication 1756-RM006C-EN-P - June 2003

Likewise, constantly setting the ProgProgReq can “lock” the instruction into
Program control. This is useful for automatic startup sequences when you
want the program to control the action of the instruction without worrying
about an operator inadvertently taking control of the instruction. In this
example, you have the program set the ProgProgReq input during the startup,
and then clear the ProgProgReq input once the startup was complete. Once
the ProgProgReq input is cleared, the instruction remains in Program control
until it receives a request to change. For example, the operator could set the
OperOperReq input from a faceplate to take over control of that instruction.
The following example shows how to lock an instruction into Program
control.

FuelFlowContraller

FIDE]
Enhanced FID

O SPFrog SP O
[SPCascade FWHHAlamm [0
@—I—é RatioFrog FWHAlam [
CWFrag FWLAlarm [
O FF FYLLAlamm @
O HandFB FWROCPosalamm @
II —— —z FregProgReq FWROCHegAlarm [0
| = FrogOperReq LewHHAlarm [0
| ProgCasRatReq DevHAlarm [0
|] ProgAutoReq CevlAlarm 5
|- —— —| ProghlanualReq DevllAlarm [
When StartupSequenceActive) Progtermdeieg Frogtperid
is set, the PIDE instruction is & PregHandfeq Fashiatiz
placed in Program control and Auto [0
Manual mode. The StartupCV Wanual =
value is used as the loop output. Overids [
Hand 5

Operator request inputs to an instruction are always cleared by the instruction
when it executes. This allows operator interfaces to work with these
instructions by merely setting the desired mode request bit. You don’t have to
program the operator interface to reset the request bits. For example, if an
operator interface sets the OperAutoReq input to a PIDE instruction, when
the PIDE instruction executes, it determines what the appropriate response
should be and clears the OperAutoReq.

Program request inputs are not normally cleared by the instruction because
these are normally wired as inputs into the instruction. If the instruction clears
these inputs, the input would just get set again by the wired input. There might
be situations where you want to use other logic to set the Program requests in
such a manner that you want the Program requests to be cleared by the
instruction. In this case, you can set the ProgValueReset input and the
instruction will always clear the Program mode request inputs when it
executes.

Function Block Attributes A-17

In this example, a rung of ladder logic in another routine is used to one-shot
latch a ProgAutoReq to a PIDE instruction when a pushbutton is pushed.
Because the PIDE instruction automatically clears the Program mode
requests, you don’t have to write any ladder logic to clear the ProgAutoReq
after the routine executes, and the PIDE instruction will receive only one
request to go to Auto every time the pushbutton is pressed.

When the TIC101AutoReq Pushbutton is pressed, one-shot latch ProgAutoReq for the PIDE instruction TIC101.
TIC101 has been configured with the ProgValueReset input set, so when the PIDE instruction executes, it
automatically clears ProgAutoReq.

TIC1MAutoReqPE TICT01AutoRegPEOneShot TIC101. ProgtwtoReq
1E roms T o
‘ il L I ‘

Publication 1756-RM006C-EN-P - June 2003

A-18 Function Block Attributes

Notes:

Publication 1756-RM006C-EN-P - June 2003

Appendix B

Structured Text Programming

Introduction This appendix describes issues that are unique with structured text
programming. Review the information in this appendix to make sure you
understand how your structured text programming will execute.

For information about: See page:
Structured Text Syntax B-1

Assignments B-3

Expressions B-5

Instructions B-12

Constructs B-13

Comments B-28

Structu red Text Syntax Structured text is a textual programming language that uses statements to

define what to execute. Structured text is not case sensitive. Structured text can
contain these components:

Term: Definition: Examples:

assignment Use an assignment statement to assign values to tags. tag := expression;
(see page B-3) The := operator is the assignment operator.
Terminate the assignment with a semi colon “;”.

expression An expression is part of a complete assignment or construct statement.
(see page B-5) An expression evaluates to a number (numerical expression) or to a true
or false state (BOOL expression).

An expression contains:

tags A named area of the memory where data is stored ~ valuel
(BOOL, SINT,INT,DINT, REAL, string).
immediates A constant value. 4
operators A symbol or mnemonic that specifies an operation tagl + tag2
within an expression. tagl >= valuel
functions When executed, a function yields one value. Use function(tagl)

parentheses to contain the operand of a function.

Even though their syntax is similar, functions differ
from instructions in that functions can only be used
in expressions. Instructions cannot be used in
expressions.

Publication 1756-RM006C-EN-P - June 2003

B-2 Structured Text Programming

Term:

Definition:

Examples:

instruction
(see page B-12)

An instruction is a standalone statement.

An instruction uses parenthesis to contain its operands.

Depending on the instruction, there can be zero, one, or multiple
operands.

When executed, an instruction yields one or more values that are part of
a data structure.

Terminate the instruction with a semi colon “;”.

Even though their syntax is similar, instructions differ from functions in
that instructions cannot be used in expressions. Functions can only be
used in expressions.

instruction() ;
instruction (operand) ;

instruction (operandl,
operandZ?,operand3) ;

construct
(see page B-13)

A conditional statement used to trigger structured text code (i.e, other
statements).
Terminate the construct with a semi colon “;”.

IF...THEN

CASE

FOR...DO
WHILE...DO
REPEAT...UNTIL
EXIT

comment
(see page B28)

Text that explains or clarifies what a section of structured text does.
o Use comments to make it easier to interpret the structured text.
o Comments do not affect the execution of the structured text.
o Comments can appear anywhere in structured text.

//comment

(*start of comment
end of comment®)

/*start of comment
end of comment*/

Entering spaces in structured text syntax is optional. Spaces have no effect on
the execution of the structured text. For example, both of these statements

execute the same:
Tag B:=Tag A

Tag B:=Tag A

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming ~ B-3

ASSignmentS Use an assignment to change the value stored within a tag. An assignment has
this syntax:

tag := expression;

where:

Component: Description:

tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL

= is the assignment symbol

expression represents the new value to assign to the tag
If tag is this data type: Use this type of expression:
BOOL BOOL expression
SINT numeric expression
INT
DINT
REAL

; ends the assignment

The 7ag retains the assigned value until another assignment changes the value.
The expression can be simple, such as an immediate value or another tag

name, ot the expression can be complex and include several operators and/or
functions. See the next section “Expressions“on page B-5 for details.

Publication 1756-RM006C-EN-P - June 2003

B-4 Structured Text Programming

Publication 1756-RM006C-EN-P - June 2003

Specify a non-retentive assignment

The non-retentive assignment is different from the regular assignment
described above in that the tag in a non-retentive assignment is reset to zero

each time the controller:
e enters the RUN mode

e Jeaves the step of an SFC if you configure the SFC for Automatic reset
(This applies only if you embed the assignment in the action of the step
or use the action to call a structured text routine via a JSR instruction.)

A non-retentive assignment has this syntax:

tag [=] expression;

where:
Component: Description:
tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL
[F] is the non-retentive assignment symbol
expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:
BOOL BOOL expression

SINT numeric expression

INT

DINT

REAL

ends the assignment

Structured Text Programming ~ B-5

Assign an ASCII character to a string

Use the assignment operator to assign an ASCII character to an element of the
DATA member of a string tag. To assign a character, specify the value of the
character or specify the tag name, DATA member, and element of the
character. For example:

This is OK: This is not OK.
stringl.DATA[0] := 65; stringl.DATA[O0] := A;

stringl.DATA[O]:

string2.DATA[O]; stringl := string2;

To add or insert a string of characters to a string tag, use either of these ASCII
string instructions:

To: Use this instruction:
add characters to the end of a string CONCAT
insert characters into a string INSERT
Expressions An expression is a tag name, equation, or comparison. To write an expression,

use any of the following:
e tag name that stores the value (variable)
e number that you enter directly into the expression (immediate value)
e functions, such as: ABS, TRUNC

e operators, such as: +, -, <, >, And, Or
As you write expressions, follow these general rules:

e Use any combination of upper-case and lower-case letter. For example,
these three variations of “AND” are acceptable: AND, And, and.

e For more complex requirements, use parentheses to group expressions
within expressions. This makes the whole expression easier to read and
ensures that the expression executes in the desired sequence. See
“Determine the order of execution““on page B11.

Publication 1756-RM006C-EN-P - June 2003

B-6 Structured Text Programming

In structured text, you use two types of expressions:

BOOL expression: An expression that produces either the BOOL value of 1
(true) or O (false).

e A bool expression uses bool tags, relational operators, and logical
operators to compare values or check if conditions are true or false.
For example, tagl>65.

e A simple bool expression can be a single BOOL tag.

e Typically, you use bool expressions to condition the execution of other
logic.

Numeric expression: An expression that calculates an integer or
floating-point value.

e A numeric expression uses arithmetic operators, arithmetic functions,
and bitwise operators. For example, tagl+b5.

e Often, you nest a numeric expression within a bool expression. For
example, (tagl+5)>65.

Use the following table to choose operators for your expressions:

If you want to: Then:

Calculate an arithmetic value “Use arithmetic operators and functions*on page B-7.
Compare two values or strings “Use relational operators*“on page B-8.

Check if conditions are true or false “Use logical operators*“on page B-10.

Compare the bits within values “Use bitwise operators“on page B-11.

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming ~ B-7

Use arithmetic operators and functions

You can combine multiple operators and functions in arithmetic expressions.

Arithmetic operators calculate new values.

To: Use this operator: Optimal data type:
add + DINT, REAL
subtract/negate - DINT, REAL
multiply * DINT, REAL
exponent (x to the power of y) ** DINT, REAL
divide / DINT, REAL
modulo-divide MOD DINT, REAL

Arithmetic functions perform math operations. Specify a constant, a
non-boolean tag, or an expression for the function.

For: Use this function: Optimal data type:
absolute value ABS (numeric expression) DINT, REAL
arc cosine ACOS (numeric expression) REAL

arc sine ASIN (numeric expression) REAL

arc tangent ATAN (numeric expression) REAL
cosine COS (numeric expression) REAL
radians to degrees DEG (numeric expression) DINT, REAL
natural log LN (numeric expression) REAL

log base 10 LOG (numeric expression) REAL
degrees to radians RAD (numeric expression) DINT, REAL
sine SIN (numeric expression) REAL
square root SQRT (numeric expression) DINT, REAL
tangent TAN (numeric expression) REAL
truncate TRUNC (numeric expression) DINT, REAL

Publication 1756-RM006C-EN-P - June 2003

B-8 Structured Text Programming

For example:

Use this format: Example:
For this situation: You'd write:
valuel operator valueZ If gain_4 and gain_4_adj are DINT tags and your gain 4 adj :=

specification says: "Add 15 to gain_4 and store the | gain 4+15;
result in gain_4_adj."

operator valuel If alarm and high_alarm are DINT tags and your alarm:=
specification says: “Negate high_alarm and store | ~high alarm;
the result in alarm.”

function (numeric expression) | Ifovertravel and overtravel_POS are DINT tagsand | overtravel POS :=
your specification says: “Calculate the absolute ABS (overtravel) ;
value of overtravel and store the result in
overtravel_POS.”

valuel operator If adjustment and position are DINT tags and position :=

(function ((value2+value3) /2) |sensorland sensor2 are REAL tags and your adjustment +
specification says: “Find the absolute value of the | ABS ((sensorl +
average of sensorl and sensor2, add the sensor2) /2);

adjustment, and store the result in position.”

Use relational operators

Relational operators compare two values or strings to provide a true or false
result. The result of a relational operation is a BOOL value:

If the comparison is: The result is:
true 1
false 0

Use the following relational operators:

For this comparison: Use this operator: Optimal Data Type:
equal = DINT, REAL, string
less than < DINT, REAL, string
less than or equal <= DINT, REAL, string
greater than > DINT, REAL, string
greater than or equal >= DINT, REAL, string
not equal <> DINT, REAL, string

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming ~ B-9

For example:

Use this format:

Example:

For this situation:

You'd write:

valuel operator valueZ

If temp is a DINT tag and your specification
says: “If temp is less than 100° then...”

IF temp<l100 THEN...

stringtagl operator
stringtag?2

If bar_code and dest are string tags and your
specification says: “If bar_code equals dest
then...”

IF bar code=dest THEN...

charl operator char2

To enter an ASCII character directly into
the expression, enter the decimal value of
the character.

If bar_code is a string tag and your
specification says: “If bar_code.DATA[0] equals
‘A then...”

IF bar code.DATA[0]=65
THEN. ..

bool tag :=
bool expressions

If count and length are DINT tags, done is a
BOOL tag, and your specification says "If count
is greater than or equal to length, you are done
counting.”

done := (count >= length);

How Strings Are Evaluated

The hexadecimal values of the ASCII characters determine if one string is less

than or greater than another string;

e When the two strings are sorted as in a telephone directory, the order of
the strings determines which one is greater.

ASCII Characters Hex Codes
lab $31$61$62
3 U T $31$62
¢ ' A $41
S e
s a AB $41$42 — AB<B
e t 1
) e B $42 —
r a $61 — a>B
v ab $61$62

e Strings are equal if their characters match.

e Characters are case sensitive. Upper case “A” ($41) is not equal to lower

case “a” ($01).

For the decimal value and hex code of a character, see the back cover of this

manual.

Publication 1756-RM006C-EN-P - June 2003

B-10 Structured Text Programming

Use logical operators

Logical operators let you check if multiple conditions are true or false. The
result of a logical operation is a BOOL value:

If the comparison is:

The result is:

true

false

Use the following logical operators:

For: Use this operator: Data Type:
logical AND &, AND BOOL
logical OR OR BOOL
logical exclusive OR XOR BOOL
logical complement NOT BOOL

For example:

Use this format:

Example:

For this situation:

You'd write:

BOOLtag If photoeye is a BOOL tag and your specification | IF photoeye THEN...
says: “If photoeye_1isonthen...”
NOT BOOLtag If photoeye is a BOOL tag and your specification | IF NOT photoeye THEN. ..

says: “If photoeye is off then...”

expressionl & expression2

If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
and temp is less than 100° then...”.

IF photoeye & (temp<100)
THEN. ..

expressionl OR expression2

If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
or temp is less than 100° then...”.

IF photoeye OR (temp<100)
THEN. ..

expressionl XOR expression2

If photoeyel and photoeye? are BOOL tags and
your specification says: “If:
o photoeyel is on while photoeye? is off
or
o photoeyel is off while photoeye2 is on
then..."

IF photoeyel XOR
photoeye2 THEN...

BOOLtag := expressionl &
expressionZ2

If photoeyel and photoeye? are BOOL tags,
open is a BOOL tag, and your specification says:
“If photoeyel and photoeye? are both on, set
open to true”.

open := photoeyel &
photoeye?2;

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming B-11

Use bitwise operators

Bitwise operators manipulate the bits within a value based on two values.

For: Use this operator: Optimal Data Type:
bitwise AND &, AND DINT
bitwise OR OR DINT
bitwise exclusive OR XOR DINT
bitwise complement NOT DINT
For example:
Use this format: Example:
For this situation: You'd write:
valuel operator valueZ2 If inputl, input2, and resultl are DINT tags and your | resultl := inputl AND

specification says: “Calculate the bitwise result of
inputl and input2. Store the result in resultl.”

input2;

Determine the order of execution

The operations you write into an expression are performed in a prescribed

order, not necessarily from left to right.

e Operations of equal order are performed from left to right.

e If an expression contains multiple operators or functions, group the
conditions in parenthesis “(). This ensures the correct order of
execution and makes it easier to read the expression.

Order: Operation:

L 0
2. function (...)
3 ok
4, — (negate)
5. NOT
6. * /,MOD
7. +, - (subtract)
8. <, <=, >, >z
9. =, <>

10. &, AND

11. XOR

12. OR

Publication 1756-RM006C-EN-P - June 2003

B-12 Structured Text Programming

Instructions

Structured text statements can also be instructions. See the Locator Table at
the beginning of this manual for a list of the instructions available in structured
text. A structured text instruction executes each time it is scanned. A
structured text instruction within a construct executes every time the
conditions of the construct are true. If the conditions of the construct are
false, the statements within the construct are not scanned. There is no
rung-condition or state transition that triggers execution.

This differs from function block instructions that use Enableln to trigger
execution. Structured text instructions execute as if Enableln is always set.

This also differs from relay ladder instructions that use rung-condition-in to
trigger execution. Some relay ladder instructions only execute when
rung-condition-in toggles from false to true. These are transitional relay ladder
instructions. In structured text, instructions will execute each time they are
scanned unless you pre-condition the execution of the structured text
instruction.

For example, the ABL instruction is a transitional instruction in relay ladder. In
this example, the ABL instruction only executes on a scan when 72g_xic
transitions from cleared to set. The ABL instruction does not execute when
tag_xic stays set or when zag_xic is cleared.

tag_sic ABL
1 E ASCI Test For Buffer Line —TF
Channel 0 —DhN—
SenalPort Control zenial_control —CER>—
Character Count e

Publication 1756-RM006C-EN-P - June 2003

In structured text, if you write this example as:
IF tag xic THEN ABL(O,serial control);
END IF;

the ABL instruction will execute every scan that Zzg_xic is set, not just when
tag_xic transitions from cleared to set.

Structured Text Programming ~ B-13

If you want the ABL instruction to execute only when 72g_xz transitions from
cleared to set, you have to condition the structured text instruction. Use a one

shot to trigger execution.

osri 1l.InputBit := tag xic;

OSRI (osri 1);
IF (osri 1.0utputBit) THEN
ABL (0, serial control);

END_IF;

Constructs Constructs can be programmed singly or nested within other constructs.
If you want to: Use this construct; Available in these languages: See page
do something if or when specific IF...THEN structured text B-14
conditions occur
select what to do based on a numerical value CASE...OF structured text B-17
do something a specific number of times before FOR...DO structured text B-19
doing anything else
keep doing something as long as certain WHILE...DO structured text B-22
conditions are true
keep doing something until a condition is true REPEAT...UNTIL structured text B-25

Publication 1756-RM006C-EN-P - June 2003

B-14 Structured Text Programming

IF..THEN Use IF...THEN to do something if or when specific conditions occur.
Operands
Structured Text
IF bool expression THEN
<statement>; Operand: Type: Format: Enter:
END IF; bool _ BOOL tag BOOL tag or expression that evaluates to
- expression expression a BOOL value (BOOL expression)

Description: The syntax is:

IF bool expressionl THEN

<statement >; — statements to execute when
bool_expressionl is true

] ELSIF bool expressionZ THEN
optional -

<statement>; € Statements to execute when
bool_expression2 is true

] ELSE
optional
<statement>; € Statements to execute when

both expressions are false

END IF;

To use ELSIF or ELSE, follow these guidelines:

1. To select from several possible groups of statements, add one or more
ELSIF statements.

e Hach ELSIF represents an alternative path.
e Specify as many ELSIF paths as you need.

e The controller executes the first true IF or ELSIF and skips the rest
of the ELSIFs and the ELSE.

2. To do something when all of the IF or ELSIF conditions are false, add
an ELSE statement.

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming B-15

The following table summarizes different combinations of IF, THEN, ELSIF,

and ELSE.
If you want to: And: Then use this construct
do something if or when conditions do nothing if conditions are false IF...THEN
are true do something else if conditions are false IF...THEN...ESLE
choose from alternative statements do nothing if conditions are false IF...THEN...ELSIF
(or groups of statements) based on - = i it statements if all IF...THEN...ELSIF...ELSE

input conaitions conditions are false

Example 1. IF...THEN

If you want this: Enter this structured text:

IF rejects > 3 then

IF rejects > 3 THEN

conveyor = off (0) conveyor := 0;
alarm =on (1) alarm := 1;
END IF;

Example 2: IF...THEN...ELSE

If you want this: Enter this structured text:

If conveyor direction contact = forward (1) then
light = off
Otherwise light = on

IF conveyor direction THEN
light := 0;
ELSE
light [:=] 1;

END IF;

The [:=] tells the controller to clear /gh? whenever the controller:
e enters the RUN mode

e leaves the step of an SFC if you configure the SFC for Automatic reset
(This applies only if you embed the assignment in the action of the step
or use the action to call a structured text routine via a JSR instruction.)

Publication 1756-RM006C-EN-P - June 2003

B-16 Structured Text Programming

Example 3: IF...THEN...ELSIF

If you want this:

Enter this structured text:

If sugar low limit switch = low (on) and sugar high limit
switch = not high (on) then

inlet valve = open (on)

Until sugar high limit switch = high (off)

IF Sugar.Low & Sugar.High THEN

Sugar.Inlet [:=] 1;

ELSIF NOT (Sugar.High) THEN
Sugar.Inlet := 0;
END IF;

The [:=] tells the controller to clear Sugar.Inlet whenever the controller:
e enters the RUN mode
e leaves the step of an SFC if you configure the SFC for Automatic reset

(This applies only if you embed the assignment in the action of the step
or use the action to call a structured text routine via a JSR instruction.)

Example 4; IF...THEN...ELSIF...ELSE

If you want this:

Enter this structured text:

If tank temperature > 100
then pump = slow

If tank temperature > 200
then pump = fast

otherwise pump = off ELSE

END IF;

IF tank.temp > 200 THEN
pump.fast :=1; pump.slow :=0; pump.off :=0;
ELSIF tank.temp > 100 THEN

pump.fast :=0; pump.slow :=1; pump.off :=0;

pump.fast :=0; pump.slow :=0; pump.off :=1;

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming ~ B-17

CASE...OF

Use CASE to select what to do based on a numerical value.

Operands:

SE numeric expression OF
selectorl: statement;
selectorN: statement;

ELSE
Statement;

END_CASE;

Structured Text

Operand:

Type:

Format:

Enter:

numeric
expression

SINT
INT

DINT
REAL

tag
expression

tag or expression that evaluates to a
number (numeric expression)

selector

SINT
INT

DINT
REAL

immediate

same type as numeric expression

IMPORTANT

If you use REAL values, use a range of values for a
selector because a REAL value is more likely to be
within a range of values than an exact match of one,
specific value.

Description: The syntax is:

specify as many

alternative selector <
values (paths) as you
need

optional <

CASE numeric expression OF

selectorl:

selector?2:

selector3:

ELSE

END CASE;

<statement>; -¢—— statements to execute when

numeric_expression = selectorl

<statement>; «— Statements to execute when

numeric_expression = selector2

<statement>; «4— Statements to execute when

numeric_expression = selector3

<statement>,;-4—— Statements to execute when

numeric_expression = any
selector

See the table on the next page for valid selector values.

Publication 1756-RM006C-EN-P - June 2003

B-18 Structured Text Programming

Example

The syntax for entering the selector values is:

When selector is:

Enter:

one value

value: statement

multiple, distinct values

valuel, value2, valueN : <statement>

Use a comma (,) to separate each value.

a range of values

valuel..valueN : <statement>

Use two periods (..) to identify the range.

distinct values plus arange valuea, valueb, valuel..valueN : <statement>

of values

If you want this;

Enter this structured text:

If recipe number = 1 then
Ingredient A outlet 1 = open (1)
Ingredient B outlet 4 = open (1)
If recipe number = 2 or 3 then
Ingredient A outlet 4 = open (1)
Ingredient B outlet 2 = open (1)
If recipe number =4, 5, 6, or 7 then
Ingredient A outlet 4 = open (1)
Ingredient B outlet 2 = open (1)
If recipe number =8, 11, 12, or 13 then
Ingredient A outlet 1 = open (1)
Ingredient B outlet 4 = open (1)
Otherwise all outlets = closed (0)

CASE recipe number OF

1: Ingredient A.
Ingredient B.
2,3 Ingredient A.
Ingredient B.
4..7: Ingredient A.
Ingredient B.
8,11..13 1Ingredient A.
Ingredient B.
ELSE

Ingredient A.Outlet 1
Ingredient A.Outlet 4
Ingredient B.Outlet 2

Ingredient B.Outlet 4

END_CASE;

Outlet 1
Outlet 4
Outlet 4

Outlet 2

Outlet 4

outlet 2

Outlet 1

Outlet 4

:=1;
:=1;
:=1;

:=1;

=1,

:=1;

:=1;

:=1;

Publication 1756-RM006C-EN-P - June 2003

controller:

e enters the RUN mode

e leaves the step of an SFC if you configure the SFC for Automatic reset
(This applies only if you embed the assignment in the action of the step
or use the action to call a structured text routine via a JSR instruction.)

The [:=] tells the controller to also clear the outlet tags whenever the

Structured Text Programming

B-19

FOR...DO

FOR count:= initial value TO

Use the FOR...DO loop to do something a specific number of times before

doing anything else.

Operands

Structured Text

final value BY increment DO Operand: Type: Format: Description:;
<statement>; count SINT tag tag to store count position as the
END FOR; INT FOR...DO executes
- DINT
initial SINT tag must evaluate to a number
value INT expression specifies initial value for count
DINT immediate
final SINT tag specifies final value for count, which
value INT expression determines when to exit the loop
DINT immediate
increment SINT tag (optional) amount to increment count
INT expression each time through the loop
DINT immediate

If you don't specify an increment, the
count increments by 1.

Make sure that you db ot iterate within the loop too many times in

IMPORTANT ,
a single scan.

e The controller does not execute any other statements in the

routine until it completes the loop.

e If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

e Consider using a different construct, such as IF. THEN.

Description: The syntax is:

optional {

optional

FOR count :=initial value

TO final value

BY increment

DO

<statement>;

IF bool expression THEN

EXIT;
END IF;

END_FOR;

-

If you don't specify an increment, the loop

increments by 1.

If there are conditions when you want to
exit the loop early, use other statements,

such as an IF...THEN construct, to
condition an EXIT statement.

Publication 1756-RM006C-EN-P - June 2003

B-20 Structured Text Programming

The following diagrams show how a FOR...DO loop executes and how an
EXIT statement leaves the loop eatly.

Done x number yes

/V of times?

no

statement 1
statement 2
statement 3
statement 4

rest of the routine

The FOR...DO loop executes a specific
number of times.

Example 1:

Done x number yes

/v of times?

no

statement 1
statement 2
statement 3
statement 4
es
v Exit? —yb

NI

v
rest of the routine

To stop the loop before the count reaches the last
value, use an EXIT statement.

If you want this:

Enter this structured text:

Clear bits 0 - 31 in an array of BOOLs:
1. Initialize the subscript tag to 0.
2. Clear array[subscript] . For example, when
subscript = 5, clear array[5].
3. Add 1 to subscript.
4. If subscript is < to 31, repeat 2 and 3.
Otherwise, stop.

For subscript:=0 to 31 by 1 do
array[subscript] := 0;

End for;

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming B-21

Example 2:

If you want this:

Enter this structured text:

A user-defined data type (structure) stores the following
information about an item in your inventory:;

o Barcode ID of the item (string data type)

o Quantity in stock of the item (DINT data type)
An array of the above structure contains an element for each
different item in your inventory. You want to search the array
for a specific product (use its bar code) and determine the
quantity that is in stock.

1. Get the size (number of items) of the Inventory array

and store the result in Inventory_Items (DINT tag).
2. Initialize the position tag to 0.

3. If Barcode matches the ID of an item in the array, then:

a. Set the Quantity tag = Inventory[position].Qty. This
produces the quantity in stock of the item.

b. Stop.

Barcode is a string tag that stores the bar code of the

item for which you are searching. For example, when

position = 5, compare Barcode to Inventory[5].ID.

4. Add 1 to position.

5. If position is < to (Inventory_Items -1), repeat 3 and 4.
Since element numbers start at 0, the last element is 1

less than the number of elements in the array.
Otherwise, stop.

SIZE (Inventory, 0, Inventory Items);

For position:=0 to Inventory Items - 1 do
If Barcode = Inventory[position].ID then

Quantity := Inventory[position].Qty;
Exit;

End if;

End for;

Publication 1756-RM006C-EN-P - June 2003

B-22 Structured Text Programming

WHILE...DO Use the WHILE...DO loop to keep doing something as long as certain
conditions ate true.
Operands:
Structured Text
WHILE bool expression DO
<statements: Operand: Type: Format: Enter:
END WHILE; bool_ BOOL tag BOOL tag or expression that evaluates to
- expression expression aBOOL value

IMPORTANT Make sure that you do ot iterate within the loop too many times in

a single scan.
e The controller does not execute any other statements in the
routine until it completes the loop.

e If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

e Consider using a different construct, such as IF.. THEN.

Description: The syntax is:

WHILE bool expressionl DO

<statement>; €— statements to execute while
bool_expressionl is true

IF bool expressionZ THEN

. EXIT; < Ifthere are conditions when you want to
optional exit the loop early, use other statements,
END_IF; such as an IF..THEN construct, to

condition an EXIT statement.

END WHILE;

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming B-23

The following diagrams show how a WHILE...DO loop executes and how an
EXIT statement leaves the loop eatly.

/, BOOL expression false

true
statement 1
statement 2

statement 3
statement 4

- !

rest of the routine

While the bool expression istrue, the
controller executes only the statements within
the WHILE...DO loop.

Example 1:

false
/y BOOL expression —

true

statement 1
statement 2
statement 3
statement 4

yes
—

v Exit?

_/ o

v
rest of the routine

To stop the loop before the conditions are true, use an
EXIT statement.

If you want this:

Enter this structured text:

The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop.

This differs from the REPEAT...UNTIL loop because the
REPEAT...UNTIL loop executes the statements in the construct
and then determines if the conditions are true before
executing the statements again. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := 0;

While ((pos <= 100)
<> targetvalue)) do

& structarrayl[pos].value

pos := pos + 2;

String tag.DATA[pos] := SINT arrayl[pos];

end while;

Publication 1756-RM006C-EN-P - June 2003

B-24 Structured Text Programming

Example 2:

If you want this:

Enter this structured text:

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.

2. Count the number of elements in SINT_array (array
that contains the ASCII characters) and store the result
in SINT_array_size (DINT tag).

3. If the character at SINT_array[element_number] =13
(decimal value of the carriage return), then stop.

4, Set String_tag[element_number] = the character at
SINT_array[element_number].

5. Add 1 to element_number. This lets the controller
check the next character in SINT_array.

6. Set the Length member of String_tag =
element_number. (This records the number of
characters in String_tag so far.)

7. If element_number = SINT _array_size, then stop. (You
are at the end of the array and it does not contain a
carriage return.)

8. Goto3.

element number := 0;
SIZE (SINT array, 0, SINT array size);
While SINT arraylelement number] <> 13 do

String tag.DATA[element number] :=
SINT arrayl[element number];

element number := element number + 1;

String tag.LEN := element number;

If element number = SINT array size then
exit;

end if;

end while;

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming ~ B-25

REPEAT...UNTIL Use the REPEAT...UNTIL loop to keep doing something until conditions
are true.
Operands:
Structured Text
REPEAT
<statement>; Operand: Type: Format: Enter:
bool _ BOOL tag BOOL tag or expression that evaluates to

UNTIL bool expression . . -
expression expression a BOOL value (BOOL expression)

END REPEAT;

IMPORTANT Make sure that you db ot iterate within the loop too many times in

a single scan.
e The controller does not execute any other statements in the
routine until it completes the loop.

e If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

e Consider using a different construct, such as IF. THEN.

Description: The syntax is:

REPEAT

<statement>; €— statements to execute while
bool_expressionl is false

IF bool expressionZ THEN

. EXIT; < Ifthere are conditions when you want to
optional exit the loop early, use other statements,
END_IF; such as an IF..THEN construct, to

condition an EXIT statement.
UNTIL bool expressionl
END REPEAT;

Publication 1756-RM006C-EN-P - June 2003

B-26 Structured Text Programming

The following diagrams show how a REPEAT...UNTIL loop executes and
how an EXIT statement leaves the loop eatly.

statement 1
statement 2
statement 3
statement 4

true

=

rest of the routine

BOOL expression

false

While the bool expression is false, the

controller executes only the statements within the

REPEAT...UNTIL loop.

Example 1:

statement 1
statement 2
statement 3
statement 4

/7

yes
Exit ?
no

v
BOOL expression &,

\/ false

rest of the routine

To stop the loop before the conditions are false, use
an EXIT statement.

If you want this:

Enter this structured text:

The REPEAT...UNTIL loop executes the statements in the
construct and then determines if the conditions are true before
executing the statements again.

This differs from the WHILE...DO loop because the WHILE...DO
The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := -1;
REPEAT

pos := pos + 2;
UNTIL ((pos = 101) OR

(structarray[pos] .value = targetvalue))

end repeat;

Publication 1756-RM006C-EN-P - June 2003

Structured Text Programming B-27

Example 2:

If you want this:

Enter this structured text:

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.

2. Count the number of elements in SINT_array (array
that contains the ASCII characters) and store the result
in SINT_array_size (DINT tag).

3. Set String_tag[element_number] = the character at
SINT _array[element_number].

4, Add 1 to element_number. This lets the controller
check the next character in SINT_array.

5. Set the Length member of String_tag =
element_number. (This records the number of
characters in String_tag so far.)

6. If element_number = SINT _array_size, then stop. (You
are at the end of the array and it does not contain a
carriage return.)

7. If the character at SINT_array[element_number] =13
(decimal value of the carriage return), then stop.
Otherwise, go to 3.

element number := 0;
SIZE (SINT array, 0, SINT array size);
Repeat

String tag.DATA[element number] :=
SINT arrayl[element number];
element number := element number + 1;
String tag.LEN := element number;
If element number = SINT array size then
exit;
end if;
Until SINT arrayl[element number] = 13

end repeat;

Publication 1756-RM006C-EN-P - June 2003

B-28 Structured Text Programming

comments To make your structured text easier to interpret, add comments to it.
e Comments let you use plain language to describe how your structured
text works
e Comments do not affect the execution of the structured text.
To add comments to your structured text:
To add a comment: Use one of these formats:
on asingle line //comment
at the end of a line of structured N N
(*comment™)
text
/*comment*/
within a line of structured text (*comment¥*)
/*comment*/
that spans more than one line (*start of comment . . . end of
comment¥®)
/*start of comment . . . end of
comment*/
For example:
Format: Example:

//comment

At the beginning of a line
//Check conveyor belt direction
IF conveyor direction THEN...

Atthe end of a line

ELSE //If conveyor isn’t moving, set alarm light
light := 1;

END IF;

(*comment¥®)

Sugar.Inlet[:=]1; (*open the inlet¥*)

IF Sugar.Low (*low level LS*)& Sugar.High (*high level
LS*) THEN. ..

(*Controls the speed of the recirculation pump. The
speed depends on the temperature in the tank.*)
IF tank.temp > 200 THEN...

/*comment*/

Sugar.Inlet:=0;/*close the inlet*/
IF bar code=65 /*A*/ THEN...
/*Gets the number of elements in the Inventory array

and stores the value in the Inventory Items tag*/
SIZE (Inventory, 0, Inventory Items);

Publication 1756-RM006C-EN-P - June 2003

Appendix C

Introduction

Immediate Values

Data Conversions

Common Attributes

This appendix describes attributes that are common to the Logix instructions.

For information about: See page:
Immediate Values C-1
Data Conversions C-1

Whenever you enter an immediate value (constant) in decimal format (e.g,, -2,
3) the controller stores the value using 32 bits. If you enter a value in a radix
other than decimal, such as binary or hexadecimal, and do not specify all 32
bits, the controller places a zero in the bits that you do not specify (zero-fill).

EXAMPLE Zero-filling of immediate values

If you enter: The controller stores:
-1 16#ffff ffff (-1)

16#ffff (-1) 16#0000 ffff (65535)
8#1234 (668) 16#0000 029c (668)
2#1010 (10) 16#0000 000a (10)

Data conversions occur when you mix data types in your programming:

When programming in: Conversions can occur when:;

relay ladder logic mix data types for the parameters within one instruction

function block you wire two parameters that have different data types

Publication 1756-RM006C-EN-P - June 2003

C-2 Common Attributes

Instructions execute faster and require less memory if all the operands of the
instruction use:

e the same data type
e an optimal data type:

— In the “Operands” section of each instruction in this manual, a bold
data type indicates an optimal data type.

— The DINT and REAL data types are typically the optimal data types.

— Most function block instruction only support one data type (the
optimal data type) for its operands.

If you mix data types and use tags that are not the optimal data type, the
controller converts the data according to these rules

e Are any of the operands a REAL value?

If: Then input operands (e.g., source, tag in an expression, limit)
convert to:

Yes REALs

No DINTs

e After instruction execution, the result (a DINT or REAL value)
converts to the destination data type, if necessary.

You cannot specify a BOOL tag in an instruction that operates on integer or
REAL data types.

Because the conversion of data takes additional time and memory, you can
increase the efficiency of your programs by:

e using the same data type throughout the instruction

e minimizing the use of the SINT or INT data types

In other words, use all DINT tags or all REAL tags, along with immediate
values, in your instructions.

The following sections explain how the data is converted when you use SINT
or INT tags or when you mix data types.

Publication 1756-RM006C-EN-P - June 2003

Common Attributes C-3

SINT or INT to DINT

For those instructions that convert SINT or INT values to DINT values, the
“Operands” sections in this manual identify the conversion method.

This conversion method: Converts data by placing:

Sign-extension the value of the left-most bit (the sign of the value) into
each bit position to the left of the existing bits until there
are 32 hits.

Zero-fill zeroes to the left of the existing bits until there are 32
bits

The following example shows the results of converting a value using
sign-extension and zero-fill.

This value #1111 1111 1111 1111 (-1)
Converts to this 2#1111 1111 1111 1111 1111 1111 1111 1111 (-1)
value by

sign-extension

Converts to this 2#0000_0000_0000_0000_1111_1111 1111 1111 (65535)
value by zero-fill

Because immediate values are always zero-filled, the conversion of a SINT or
INT value 7ay produce unexpected results. In the following example, the
comparison is false because Source A, an INT, converts by sign-extension;
while Source B, an immediate value, is zero-filled.

EQU

Equal

Source A remote_rack_1:l.Data[0]
2#1111_1111 1111 1111

Source B 2#1111_1111_1111_1111

42093

Publication 1756-RM006C-EN-P - June 2003

C-4 Common Attributes

Publication 1756-RM006C-EN-P - June 2003

e Specify any immediate value in the decimal radix

If you use a SINT or INT tag and an immediate value in an instruction that
converts data by sign-extension, use one of these methods to handle
immediate values:

e If you are entering the value in a radix other than decimal, specify all 32
bits of the immediate value. To do so, enter the value of the left-most bit

into each bit position to its left until there are 32 bits.

e Create a tag for each operand and use the same data type throughout the
instruction. To assign a constant value, either:

— Enter it into one of the tags

— Add a MOV instruction that moves the value into one of the tags.

e Use a MEQ instruction to check only the required bits

The following examples show two ways to mix an immediate value with an

INT tag. Both examples check the bits of 2 1771 I/O module to determine if
all the bits are on. Since the input data word of a 1771 I/O module is an INT
tag, it is easiest to use a 16-bit constant value.

EQU
Equal
Source A remote_rack_1:l.Data[0]
2#1111 1111 1111 1111
Source B int_0
2#1111_1111 1111 1111

EXAMPLE Mixing an INT tag with an immediate value

Since remote_rack_1:1.Data/0] is an INT tag, the value
to check it against is also entered as an INT tag,

42093

EXAMPLE Mixing an INT tag with an immediate value

Since remote_rack_1:1.Data/0] is an INT tag, the value
to check it against first moves into z#_0, also an INT
tag. The EQU instruction then compares both tags.

MOV
Move
Source 2#1111 1111 1111 1111

Dest int_0
2#1111 1111 1111 1111

EQU
Equal
Source A remote_rack_1:1.Data[0]
2#1111 1111 1111 1111
Source B int_0
2#1111_ 1111 1111 1111

42093

Common Attributes C-5

Integer to REAL

The controller stores REAL values in IEEE single-precision, floating-point
number format. It uses one bit for the sign of the value, 23 bits for the base
value, and eight bits for the exponent (32 bits total). If you mix an integer tag
(SINT, INT, or DINT) and a REAL tag as inputs in the same instruction, the
controller converts the integer value to a REAL value before the instruction

executes.
e A SINT or INT value always converts to the same REAL value.
e A DINT value may not convert to the same REAL value:

— A REAL value uses up to 24 bits for the base value (23 stored bits
plus a “hidden” bit).

— A DINT value uses up to 32 bits for the value (one for the sign and
31 for the value).

— If the DINT value requires more than 24 significant bits, it #ay not
convert to the same REAL value. If it will not, the controller rounds
to the nearest REAL value using 24 significant bits.

DINT to SINT or INT

To convert a DINT value to a SINT or INT wvalue, the controller truncates the
upper portion of the DINT and sets the overflow status flag, if necessary. The
following example shows the result of a DINT to SINT or INT conversion.

EXAMPLE Conversion of a DINT to an INT and a SINT

This DINT value: Converts to this smaller value:
16#0001_0081 (65,665) INT: 16#0081 (129)
SINT: 16481 (-127)

Publication 1756-RM006C-EN-P - June 2003

C-6 Common Attributes

Publication 1756-RM006C-EN-P - June 2003

REAL to an integer

To convert a REAL value to an integer value, the controller rounds the
fractional part and truncates the upper portion of the non-fractional part. If
data is lost, the controller sets the overflow status flag. Numbers round as
follows:

e Numbers other than x.5 round to the nearest whole number.

e X5 rounds to the nearest even number.

The following example show the result of converting REAL values to DINT
values.

EXAMPLE Conversion of REAL wvalues to DINT values

This REAL value: Converts to this DINT value:

2.5

-1.6

-1.5

' ' ' '
RN NN

-1.4

14

15

16

NN N -

25

IMPORTANT The arithmetic status ﬂags are set based on the value
being stored. Instructions that normally do not affect
arithmetic status keywords might appear to do so if
type conversion occurs because of mixed data types for
the instruction parameters. The type conversion

process sets the arithmetic status keywords.

Appendix D

Function Block Faceplate Controls

Introduction RSLogix 5000 programming software includes faceplates (controls) for some
of the function block instructions. These faceplates are Active-X controls that
you can use in RSView32 software or any other application that can act as an
Active-X container. The faceplates communicate with the controller via the
RSLinx OPC server.

IV e ad RSLogix 5000 programming software is not a valid

Active-X containet. You must have an Active-X
container, such as RSView32 software to use
the faceplates.

These instructions have faceplates:

Instruction: See page:
Alarm (ALM) D-6
Enhanced Select (ESEL) D-8
Totalizer (TOT) D-9
Ramp/Soak (RMPS) D-11
Discrete 2-State Device (D2SD) D-14
Discrete 3-State Device (D3SD) D-16
Enhanced PID (PIDE) D-18

You configure the faceplates through property pages that you open through
the container application, such as RSView32 software.

All faceplates have four property pages in common.

e general
e display
® server

e fonts

Publication 1756-RM006C-EN-P - June 2003

D-2 Function Block Faceplate Controls

Configuring general properties

The general property page determines how the control operates.

Logix 5000 PIDE Faceplate Control Properties ; x|

General | Display | PIDE | Server | Fonts |

Tag: IF'ru:ugram:MainF'ru:ugram.FI:::wLu:u:up _I
T opic: IL::u:upD emot'11
|Ipdate R ate: I D.Eﬂﬁ TBC

(] I Cancel Spply

Feature on property page: Description:

Tag This entry connects a specific function block instruction with the control.

Topic This option configures the access path. This value is needed to connect to the RSLinx
OPC Server.

Update Rate This option configures the Update Rate of the control in seconds. Use the spin control to

modify the rate in increments of 0.25 seconds.
default = 1.00 seconds

IMPORTANT The example Block Tag in the screen above shows a

controller-scoped tag name. By default, function
blocks automatically assign a program-scoped block
tag when you insert the function block. To specify a
program-scoped block tag named PID1, enter:

program: program_name.PID1

where program_name is the name of the program.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-3

Configuring display properties

The display property page determines general screen properties.

Logix 5000 PIDE Faceplate Control Properties j x|

General Display | FIDE I Sewerl Fonts I

General Dirawing

Background Colar:

Show Frame: v

(] I Cancel Spply

Feature on property page: Description;
Background Color This button is the color of the faceplate’s background color.
default = light gray
Show Frame This option turns on and off a 3-dimensional frame to the control. This allows the user to

separate the control from other items that may be on the display.
default = checked

Publication 1756-RM006C-EN-P - June 2003

D-4 Function Block Faceplate Controls

Configuring server properties

The server property page lets you configure the RSLinx OPC server so you
can use the faceplates on a remote workstation.

Logix 5000 PIDE Faceplate Control Properties :.' ﬂ

Generall Displa_l,ll FIDE Server | Fonts I

OFC Server: RS Lirs
Launch Remately: [
Remote kachine: I _I

(] I Cancel Spply

Feature on property page:

Description:

Launch Remotely

Select whether to connect to a remote machine.
Default = unchecked (do not connect to a remote workstation)

Remote Machine

This field is enabled when the “Launch Remotely” box is checked. Specify the name of the
remote workstation to which the faceplate is to connect. For the faceplate to operate
correctly, the remote workstation must have RSLinx Gateway software installed on it with
the appropriate security settings for this client workstation and user. Click the ellipsis button
to browse the devices on the Local Area Network.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-5

Configuring font properties

The fonts property page determines the font
Configure a ControlFont to be used in the m

s that appear on the faceplates.
ain part of the faceplates and a

MinorFont font to be used in scales and other minor portions of

the faceplates.

Logix 5000 PIDE Faceplate Control Proper

Generall Displa_l,ll FIDE I Server Fonts |

ties ﬂ

Property M ame; I ControlFant
Font; Font Stule:

[

Size:

Arizl |Reguar =] [375 =]

T @MS PGothic | - Effects
B @MS PMincho — | [Strikeout ™ Underline
T @MS Ul Gothic
ADMUIALG ~ Sample
ADRUIIESm AaBbYyZz
T - |
Ok I Cancel Aol

Feature on property page:

Description:

Property Name

Use this pulldown to select the font to configure. Sele
Default = ControlFont

ct ControlFont or MinorFont.

Font Select the font for the control. The list contains all available fonts on the system.
Default = Arial

Size Configure the point size of the font.
Default ControlFont = 10.5 points
Default MinorFont = 8.25 points

Effects Select whether to underline and/or strikeout the font.

Default = both unchecked

Publication 1756-RM006C-EN-P - June 2003

D-6 Function Block Faceplate Controls

ALM Control

Alarm : Alarml

50 gallans
15 gallonsisec

ROC Alarm: Positive
100 [|

| 0|

Status: Ok

Feature on control:

Displays the:

In

current In Value.

Rate Of Change (ROC)

value of the ROC.
If either the ROCPosAlarm or ROCNegAlarm values are set, the text color turns red. A tooltip
is shown with the text of “Rate Of Change” when the cursor points to the control.

Alarm Bar Meter

In value of the block as it relates to the Alarm Limits of the block.

If either the HAlarm or LAlarm values are set, the bar color is yellow. Likewise if either the
HHAlarm or LLAlarm value are set, the bar color is red. If there are no alarms, the bar color
is green.

Alarm Marking Bars

values of HHLim, HLim, LLim, and LLLim.
The HHLim and LLLim bars are red, the HLim and LLim bars are yellow.

Alarm Meter Scale

scale of the alarm bar.
The high part of the scale = HHLim + Deadband. The low end of the scale = LLLim —
Deadband.

Detail Button

Detail Dialog pop-up.
s D B

gallons gallons/sec

HiHi Limit: 90 ROC Fos Limit: 30
Hi Limit: 80 ROC Meg Limit: -3a
La Limit: 20 ROC Period (sec): 2

LoLo Lirnit:
Deadband:

LU,

Status

all the status bits that are set in the block.
If no bits are set, the status displays “OK”.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-7

The ALM control has this additional property page.

Rockwell Software Alarm Control Properties !

Generall Display | Fonts I

I Unitz: Igallu:uns

Colors
hd eter
[Mao &larm]:

H-L alarm:

HH-LL Atarm: [

Cancel][4

Configure this property:

To specify the:

In Units units for the In field on the control.

Meter Color color of the meter bar when no alarms are current.

H-L Color color of the meter bar when the instruction is in either the Low or High alarm state.

HH-LL Color color of the meter bar when the instruction is in either the Low-Low or High-High alarm state.

Publication 1756-RM006C-EN-P - June 2003

D-8 Function Block Faceplate Controls

ESEL Control

Enhanced Select : Selectl

F In1: 10.3 hode:
> n: 15.2 Frogram
In3: 15.5 Chverride
[nd: 16.55 Prograrn |
Clperator |
=elected In: IT
selector Type: Awerage
Clutput: 122

Status: InsFaulted,

Feature on control:

Displays the;

Mode

mode of the block.

Input

inputs to the block.
The number of displays (1-6), depends on the number of InsUsed.

Fault Indicator

the letter “F” to the left of the input display if the particular input is faulted.

Selected Indicator

triangle to the left of the input display indicates the selected input.

Program Button

OperProgReq is set when you click this button.

Operator Button

OperOperReq is set when you click this button.

Selected In value of Selectedin.

Selector Type select mode.

Output value of Out.

Status all the status bits that are set in the block.

If no bits are set, the status displays “OK”.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls

D-9

TOT Control

Totalizer : Totalizer
Total: 74,1058 gallons Mode:
Old Taotal: 0 gallons Operatar
Input: 4 gallonsisec Stop

Target Pragram
100.0

—Dev 1 Operator

Start
Stop

Reset

Detail. ..

9|
Reset

Lowr Input Cutoff Active

Status: Ok

Feature on control:

Displays the:

Mode mode of the block.

Total value of Total.

Old Total value of the previous Total.
Input value of In.

Total Meter range of Total values.

Target Devl and Dev2 Tick Marks

values of TargetDev1 and TagetDev?2.

Total Scale

scale of the total meter.
The high part of the scale = Target. The low end of the scale = Reset.

Program Button

OperProgReq is set when you click this button.

Operator Button

OperOperReq is set when you click this button.

Start Button

OperStartReq is set when you click this button.

Stop Button

OperStopReq is set when you click this button.

Reset Button

OperResetReq is set when you click this button.

Publication 1756-RM006C-EN-P - June 2003

D-10 Function Block Faceplate Controls

Feature on control: Displays the:

Detail Button Detail Dialog pop-up.
Totalizer : Totalizerl Detail |

gallons

Target: 100
Target Dev 1:
Target Dey 2:

UL

Reset:

Lowe In Cutoff;
Low Input Cutoff Active statement “Low Input Cutoff Active” only when the LowInCutoffFlag is set.
Status all the status bits that are set in the block.

If no bits are set, the status displays “OK”.

The TOT control has this additional property page.

Rockwell Software Totalizer Control Properties |

| Fonts I

General I Display

I Uitz Igallu:uns.-"seu:

Total Urits; Igallu:uns

keter Calor:
k. I Cancel]
Configure this property: To specify the:
In Units units for the In field on the control.
Total Units units for the Total and Old Total fields on the control.
Meter Color bar color of the meter.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-11

RMPS Control

Ramp/Soak : RampSoak

Clutput: 10 gallons
P 20 gallans
Current Segment: 1

Total Segments: 8

Ramp “alue: 1 gallons/min
soak Walue: 1 gallons
=oak Time: 32 min

=oak Time Left: 30 min

Cur Seg Oper:

1
Cut Oper; 12 gallons
li

=oak Time Oper: 0 | min

Guaranteed Hamp In Effect
Status: PYFaulted,

hode:
Cperator
hanual

Frogram
Cperator
Auto
hanual

Initialize

Detail. ..

Feature on control:

Displays the:

Mode mode of the block.
Output value of Out.
PV value of PV.

Current Segment

value of Current Segment.

Ramp Value value of RampValug[| for the current segment.
Soak Value value of SoakValue[] for the current segment.
Soak Time value of SoakTime[] for the current segment.
Soak Time Left value of SoakTimeLeft.

Program Button

OperProgReq is set when you click this button.

Operator Button

OperOperReq is set when you click this button.

Auto Button

OperAutoReq is set when you click this button.

Manual Button

OperManualReq is set when you click this button.

Initialize Button

Initialize is set when you click this button.

This button is only enabled when the block is in the Operator Manual mode.

Publication 1756-RM006C-EN-P - June 2003

D-12 Function Block Faceplate Controls

Feature on control: Displays the:

Detail Button Detail Dialog pop-up.

Ramp/Soak : Ramp5o0akl Detail E3

Ramp Value Soak Walue Soak Time

Segment igallans/min) {gallons) {rmin)
2 2 2 T
g z 3 43
4 4 4 D
5 5 54 D
B B BS 45
7 7 D 0~
Mumber of Segs: 8 Guaranteed Ramp: ¥ Deadband; 11
Ramp By: Time Guaranteed Soak: W Deadband: 12
Cyclic Ramp/Soak:
Cur Seg Oper value of CurrentSegOper.
Out Oper value of OutOper.
Soak Time Oper value of SoakTimeOper.
Guaranteed Ramp or Soak in Effect statement “Guaranteed Ramp in Effect” or “Guaranteed Soak in Effect” when the

corresponding GuarRamp or GuarSoak bits are set.

Status all the status bits that are set in the block.
If no bits are set, the status displays “OK”.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-13

The RMPS control has this additional property page.

Rockwell Software Bamp/5Soak Control Properties |

Famp % alue Array: IHamp"»-"aIue
Soak Yalue Aray: ISDak\-"aIue

Soak Time Array: ISDakTime

P Uitz Igallu:uns

(] I Cancel]

Configure this property:

To specify the:

Ramp Value Array

array in the controller that contains the ramp values.

Soak Value Array array in the controller that contains the soak values.
Soak Time Array array in the controller that contains the soak times.
PV Units units that are displayed in the control.

Publication 1756-RM006C-EN-P - June 2003

D-14 Function Block Faceplate Controls

D2SD Control

2 State Device : 025N

hiode:
Cperator
Hand

Open |4 Opened
P Close

Frogram |
_Operstor |

Cperator

Fault Alarm:l_ Unlatchl ElEEE]

hode Alarm: . =

Status: Ok

Feature on control:

Displays the:

Mode

mode of the block.

State Buttons

open or closed state of the Commanded State Label as defined in the control’s property page.
The top button sets OperlReq. The bottom button sets OperOReq. When clicked, the button
sets the OperReq field for that particular state.

Ordered State Indicator

value of the Command Status by pointing to the request button for that state.

Actual State Indicators

status of the actual state.
If DeviceStatus is set, the actual state is as configured for the given state.

Non-Permissive Indicator

letters “NP” to the left of the button if the StatePerm is not set for that state.

Fault Alarm Indicator

indicator if FaultAlarm is set.

Mode Alarm Indicator

indicator if ModeAlarm is set.

Unlatch Button

status of FaultAlmUnlatch.
When this button is clicked, FaultAlmUnlatch is set. This button is only enabled when
FaultAlarm and FaultAlmLatch are set.

Program Button

OperProgReq is set when you click this button.

Operator Button

OperOperReq is set when you click this button.

FB1 value of FB1.
FBO value of FBO.
Status all the status bits that are set in the block.

If no bits are set, the status displays “OK”.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-15

The D28SD control has this additional property page.

Rockwell Software 2 State Device Control Properties |

._: Fonts I

Cormanded State 0 Label: IO ose
Commanded State 1 Label: IQIJen
&ctual State 0 Label: |C1 osed

Actual State 1 Label: |Qoened

k. I Cancel ol

Configure this property:

To specify the:

Commanded State 0 Label

label for the Commanded State 0.

Commanded State 1 Label

label for the Commanded State 1.

Actual State 0 Label

label for the Actual State 0.

Actual State 1 Label

label for the Actual State 1.

Publication 1756-RM006C-EN-P - June 2003

D-16 Function Block Faceplate Controls

D3SD Control

3 State Device : D35DN

Fast hode:

{Dribble DR

Dribble b

Off

Frogram |
_Operstor |

Clperator

Fault Alarm: [JJJ|_Unlatch | FED:

FBE1:
FBZ:
FE3:

hode Alarm: |_

Status: Ok

Feature on control:

Displays the:

Mode

mode of the block.

State Buttons

open or closed state of the Commanded State Label as defined in the control’s property page.
The top button sets Oper2Req. The middle button sets OperlReq. The bottom button sets

OperOReq. When clicked, the button sets the OperReq field for that particular state.

Ordered State Indicator

value of the Command Status by pointing to the request button for that state.

Actual State Indicators

status of the actual state.
If DeviceStatus is set, the actual state is as configured for the given state.

Non-Permissive Indicator

letters “NP” to the left of the button if the StatePerm is not set for that state.

Fault Alarm Indicator

indicator if FaultAlarm is set.

Mode Alarm Indicator

indicator if ModeAlarm is set.

Program Button

OperProgReq is set when you click this button.

Operator Button

OperOperReq is set when you click this button.

FB3 value of FB3.
FB2 value of FB2.
FB1 value of FB1.
FBO value of FBO.

Unlatch Button

status of FaultAlmUnlatch.
When this button is clicked, FaultAlmUnlatch is set. This button is only enabled when
FaultAlarm and FaultAlmLatch are set.

Status

all the status bits that are set in the block.
If no bits are set, the status displays “OK”.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-17

The D3SD control has this additional property page.

Rockwell Software 3 State Device Control Properties |

| Faonts I

Commanded State 0 Label: _G '
Comnmanded State 1 Label: D’i bbl e

Commanded State 2 Label: :Fast

Actual State 0 Label: G f
&ctual State 1 Label: Pr I bbl e
Actual State 2 Label:]:aSt

k. I Cancel ol

Configure this property:

To specify the:

Commanded State 0 Label

label for the Commanded State 0.

Commanded State 1 Label

label for the Commanded State 1.

Commanded State 2 Label

label for the Commanded State 2.

Actual State 0 Label

label for the Actual State 0.

Actual State 1 Label

label for the Actual State 1.

Actual State 2 Label

label for the Actual State 2.

Publication 1756-RM006C-EN-P - June 2003

D-18 Function Block Faceplate Controls

PIDE Control

Enhanced PID : Pid1

op P hode:
100= =100 Cperator
Tﬁé j?s Frogram
SDE %SD Cperator
25; i CasiRat

1= =0 Auto

ROC Pos Alarm

&l B8.3607 | gallons

P B5 gallons

el
Ratio: 12 S
| B

hanual

P R

Tune...

] al 100

Bl
Y i)

Y ROC Limited
Status: InstructFault, CYFaulted, HandFBF aulted,

Feature on control:

Displays the:

Mode

mode of the block.

PV Barmeter

value of PV. The limits of the barmeter are PVEUMax and PVEUMin.

Alarm Bars limits for the Deviation and PV Limit Alarms.
The Deviation Alarm Bars are on the left and move with the SP. The PV Limit Alarms are on
the right and remain fairly static.

SP Slider value of the SP.

The limits of the slider are PYEUMax and PVEUM n. The slider is confined to SPHLimit and
SPLLimit by its channel, which may not completely cover the PV Range.

ROC Alarm Indicator

status of PVROCPosAlarm and PYROCNegAlarm.

Ratio

value of Ratio.
This display is only shown if both the AllowCasRat and UseRatio bits are set.

SP value of the SP. The user may enter the new SP in this edit as well.
PV value of PV.
CV Slider value of CV.
The limits of the slider are 0% to 100%.
cv value of CV.

Publication 1756-RM006C-EN-P - June 2003

Function Block Faceplate Controls ~ D-19

Feature on control: Displays the:

Program Button OperProgReq is set when you click this button.
Operator Button OperOperReq is set when you click this button.
Cas/Rat Button OperCasRatReq is set when you click this button.
Auto Button OperAutoReq is set when you click this button.
Manual Button OperManualReq is set when you click this button.
Detail Button Detail Dialog pop-up.

Enhanced PID : Pidl Detail

gallons gallons
PVHHiLimitt [90 DevHHiLmitt [10 | CV HiLimit (%): [&0
PV Hi Limit: [B0 DevHiLimit [6 CV Lo Limit (%): [2
PV Lo Limit: [20 DevlaLimit: 12 CVROC Limit (%fsec): | 0
PV LoLo Limit; 10 Dev LoLo Liemit; 20 ZC Deadband (gallons): 1
P Deadband: [_D Dev Deadband; 2

2
2
PY ROC Neg Limit {gallons/sec): 4
]

P% ROC Pos Limit (gallons/sec): P Tracking: I
PY ROC Period(sec):
Tune Button Tuning Dialog pop-up.
nhanced PID : | =lojx|

Kp 1797549 @ Pvioo
Kif1 fmin) 18,4891 z
Kdl(min) 0.02197

1:47:45 P 1:43:45 1:55:45 1:57:45 P

Autotune 1:4745PM 1:49.45 1:51:45 1:55.45 1:57:45 PM
s =] = [[1 =]

Publication 1756-RM006C-EN-P - June 2003

D-20 Function Block Faceplate Controls

Feature on control:

Displays the:

Autotune Button

Autotuning Dialog pop-up (which you access from the Tune Dialog s

Autotune Autatune sl 3
Process Type Flow >
Acquire Tag Tag Status: Acquired PV Change Lirmit 00
Release Tag | CW Step Size: 20
m Execution State: Done
Autotune Status: OK
Abort

Autotune Gain:
Derivative (min)
0.0073234
0.0146466
0.0219702
0.02197

Integral {1/min)

6.16307
123261
16.4892
16.4891

Propaortional

0599188
1.19836
1.79756
1.79785

Slow Response

Medium Response

~
~
Fast Response &
~

Current

Load Gains Ta PIDE

Time Constant 51
Deadtime: 22
Gain 1.05055

hown above).

Status

all the status bits that are set in the block.
If no bits are set, the status displays “OK”.

The PIDE control has this additional property page.

Logix 5000 PIDE Faceplate Control Properties

Generall Display FIDE |Sewer| Fonts I

Autatune Taog; IF'ngram:MainF'ru:ugram.FI:::wLu:u:upT LIner

L

P Units: [GPM

Time Spat [min): I

30,00

Display Time [min: | 1000 By Color
Tuning Access: [V H-L Alarm: SP Color: ..
HH-LL &larm: v Coalar:
(] I Cancel Spply
Configure this property: To specify the:

PV Units string for the PV and SP units on the control.

Time Span length of time that the values are kept for the trends.
Display Time length of time that the values are displayed in the trends.
PV, SP, and CV Colors color of the trend-line for each parameter.

Alarm Colors alarm colors represent the colors in the color bars.

Alarm 1 Color represents the Lo or Hi alarms. Alarm 2 color represents the low-low

or high-high alarms.

Publication 1756-RM006C-EN-P - June 2003

Index

A

Alarm 1-2

ALARM structure 1-2

ALM 1-2

arithmetic status flags
overflow A-7

ASCII instructions
STOD B-14

assume data available A-5, A-6, A-7

attributes
converting data types C-1
immediate values C-1
autotuning 1-53

C

CASE B-17

common attributes C-1
converting data types C-1
immediate values C-1

converting data types C-1

D

D Flip-Flop 6-2
D2SD 1-6
D3SD 1-15
Deadtime 1-28
DEDT 1-28
Derivative 3-2
DERV 3-2
DFF 6-2
Discrete 2-State Device 1-6
Discrete 3-State Device 1-15
DISCRETE_2STATE structure 1-6
DOMINANT _RESET structure 6-6
DOMINANT_SET structure 6-8
drives instructions

INTG 2-2

Pl 2-8

PMUL 2-20

SCRV 2-28

SOC 2-38

UPDN 2-46

E

Enhanced PID 1-41
Enhanced Select 4-2
ESEL 4-2

execution order A-4

F

faceplates

ALM 1-4, D-6

D2SD 1-9, D-14

D3SD 1-20, D-16

display properties D-3

ESEL 4-6, D-8

font properties D-5

general properties D-2

PIDE 1-53, D-18

RMPS 1-86, D-11

TOT 1-110, D-9
feedback loop

function block diagram A-5
FGEN 1-33
filter instructions

DERV 3-2

HPF 3-6

LDL2 3-12

LPF 3-18

NTCH 3-24
FILTER_HIGH_PASS structure 3-6
FILTER_LOW_PASS structure 3-18
FILTER_NOTCH structure 3-24
FLIP_FLOP_D structure 6-2
FLIP_FLOP_JK structure 6-4
function block diagram

create a scan delay A-7

resolve a loop A-5

resolve data flow between blocks A-6
Function Generator 1-33
FUNCTION_GENERATOR structure 1-34

H

High Pass Filter 3-6
High/Low Limit 4-9
HL_LIMIT structure 4-9
HLL 4-9

HPF 3-6

Publication 1756-RM006C-EN-P - June 2003

2 Index

immediate values C-1
Integrator 2-2
INTEGRATOR structure 2-2
INTG 2-2

J
JK Flip-Flop 6-4
JKFF 6-4

L

latching data A-2

LDL2 3-12

LDLG 1-37

LEAD_LAG structure 1-37
LEAD_LAG_SEC_ORDER structure 3-12
Lead-Lag 1-37

Low Pass Filter 3-18

LPF 3-18

M

MAVE 5-2
MAXC 5-6
Maximum Capture 5-6
MAXIMUM_CAPTURE structure 5-6
MINC 5-8
Minimum Capture 5-8
MINIMUM_CAPTURE structure 5-8
mixing data types C-1
move/logical instructions

DFF 6-2

JKFF 6-4

RESD 6-6

SETD 6-8
Moving Average 5-2
Moving Standard Deviation 5-10
MOVING_AVERAGE structure 5-2
MOVING_STD_DEYV structure 5-10
MSTD 5-10
Multiplexer 4-12
MULTIPLEXER structure 4-12
MUX 4-12

N

Notch Filter 3-24
NTCH 3-24

Publication 1756-RM006C-EN-P - June 2003

0

order of execution A-4
overflow conditions A-7

P

Pl 2-8
PIDE 1-41
PIDE autotuning 1-53
PIDE_AUTOTUNE structure 1-53
PMUL 2-20
Position Proportional 1-75
POSITION_PROP structure 1-75
POSP 1-75
process control instructions

ALM 1-2

D2SD 1-6

D3SD 1-15

DEDT 1-28

FGEN 1-33

LDLG 1-37

PIDE 1-41

POSP 1-75

RMPS 1-82

SCL 1-96

SRTP 1-100

TOT 1-106
program/operator control

D2SD 1-11

D3SD 1-23

ESEL 4-8

overview A-14

PIDE 1-60

RMPS 1-89

TOT 1-112
programming examples

ESEL 4-7

POSP 1-81

RMPS 1-89

SCL 1-99

SRTP 1-105
PROP_INT structure 2-8
Proportional + Integral 2-8
Pulse Multipler 2-20

PULSE_MULTIPLIER structure 2-20

Index 3

R

Ramp/Soak 1-82
RAMP_SOAK structure 1-83
Rate Limiter 4-15
RATE_LIMITER structure 4-15
RESD 6-6

Reset Dominant 6-6

RLIM 4-15

RMPS 1-82

S

S_CURVE structure 2-28
Scale 1-96
SCALE structure 1-96
scan delay
function block diagram A-7
SCL 1-96
SCRV 2-28
S-Curve 2-28
SEC_ORDER_CONTROLLER structure 2-38
Second-Order Controller (SOC) 2-38
Second-Order Lead Lag 3-12
SEL 4-19
Select 4-19
SELECT structure 4-19
select/limit instructions
ESEL 4-2
HLL 4-9
MUX 4-12
RLIM 4-15
SEL 4-19
SNEG 4-21
SSUM 4-23
SELECT _ENHANCED structure 4-2
SELECTABLE_NEGATE structure 4-21
SELECTABLE_SUMMER structure 4-23
Selected Negate 4-21
Selected Summer 4-23
Set Dominant 6-8
SETD 6-8
SNEG 4-21
SOC 2-38
Split Range Time Proportional 1-100
SRTP 1-100
SSUM 4-23

statistical instructions

MAVE 5-2
MAXC 5-6
MINC 5-8
MSTD 5-10

STOD instruction B-14
string conversion instructions

STOD B-14

String To DINT B-14
structured text

CASE B-17

structures

ALARM 1-2
DISCRETE_2STATE 1-6
DOMINANT_RESET 6-6
DOMINANT_SET 6-8
FILTER_HIGH_PASS 3-6
FILTER_LOW_PASS 3-18
FILTER_NOTCH 3-24
FLIP_FLOP D 6-2
FLIP_FLOP_JK 6-4
FUNCTION_GENERATOR 1-34
HL_LIMIT 4-9

INTEGRATOR 2-2

LEAD_LAG 1-37
LEAD_LAG_SEC_ORDER 3-12
MAXIMUM_CAPTURE 5-6
MINIMUM_CAPTURE 5-8
MOVING_AVERAGE 5-2
MOVING_STD_DEV 5-10
MULTIPLEXER 4-12
PIDE_AUTOTUNE 1-53
POSITION_PROP 1-75
PROP_INT 2-8
PULSE_MULTIPLIER 2-20
RAMP_SOAK 1-83
RATE_LIMITER 4-15
S_CURVE 2-28

SCALE 1-96
SEC_ORDER_CONTROLLER 2-38
SELECT 4-19
SELECT_ENHANCED 4-2
SELECTABLE_NEGATE 4-21
SELECTABLE_SUMMER 4-23
UP_DOWN_ACCUM 2-46

Publication 1756-RM006C-EN-P - June 2003

4 Index

T
timing modes A-9
TOT 1-106
Totalizer 1-106

U

unresolved loop

function block diagram A-5
Up/Down Accumulator 2-46
UP_DOWN_ACCUM structure 2-46
UPDN 2-46

Publication 1756-RM006C-EN-P - June 2003

How Are We Doing?

AB Your comments on our technical publications will help us serve you better in the future.
Thank you for taking the time to provide us feedback.
p i

You can complete this form and mail it back to us, visit us online at www.ab.com/manuals, or
email us at RADocumentComments@ra.rockwell.com

Pub. Title/Type Logix5000™ Controllers Process Control and Drives Instructions Reference Manual

Cat. No. 1756-Lx, 1769-Lx, Pub. No. 1756-RMO06C-EN-P Pub. Date June 2003 Part No. 957824-67

1789-Lx, 1794-Lx,
PowerFlex 700S

Please complete the sections below. Where applicable, rank the feature (1=needs improvement, 2=satisfactory, and 3=outstanding).

Overall Usefulness 1 2 3 How can we make this publication more useful for you?
i i 2
Completeness 1 2 3 Can we add more information to help you?
(all necessary information procedure/step illustration feature
is provided) .
example guideline other
explanation definition
Technical Accuracy 1 2 3 Can we be more accurate?
(all provided information . .
is correct) text illustration
Clarity 1 2 3 How can we make things clearer?

(all provided information is
easy to understand)

Other Comments You can add additional comments on the back of this form.
Your Name Location/Phone
Your Title/Function Would you like us to contact you regarding your comments?

No, there is no need to contact me
Yes, please call me

Yes, please email me at

Yes, please contact me via

Return this form to: Allen-Bradley Marketing Communications, 1 Allen-Bradley Dr., Mayfield Hts., OH 44124-9705
Phone: 440-646-3176 Fax: 440-646-3525 Email: RADocumentComments@ra.rockwell.com

Publication ICCG-5.21- January 2001 PN 955107-82

PLEASE FASTEN HERE (DO NOT STAPLE)

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

@ Allen-Bradley
EEEUNGEIR DORPGE

ROCKWELL

Rockwell
Automation

1 ALLEN-BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

PLEASE REMOVE

ASCII Character Codes

Character Dec Hex Character Dec Hex Character Dec Hex Character Dec Hex
[ctrl-@]NUL 0 $00 SPACE 32 $20 @ 64 $40 ‘ 9% $60
[ctrl-A]SOH 1 $01 ! 33 %21 A 65 $41 a 97 $61
[ctr-B] STX 2 $02 “ 34 $22 B 66 $42 b 98 $62
[ctr-CIETX 3 $03 # 3B $23 C 67 $43 c 99 $63
[ctrl-D] EOT 4 $04 $ 36 $24 D 68 $44 d 100 $64
[ctr-E]ENQ 5 $05 % 37 $25 E 69 $45 e 101 $65
[ctrl-F]ACK 6 $06 & 38 $26 F 70 $46 f 102 $66
[ctrl-G] BEL 7 $07 ‘ 39 %27 G 1 $47 g 103 $67
[ctrl-H]BS 8 $08 (40 $28 H 72 $48 h 104 $68
[ctrl-I] HT 9 $09) 41 $29 [73 $49 [105 $69
[ctrl-J] LF 10 $I1($0A) * 42 $2A J 74 $4A] 106 $6A
[ctrl-K]VT 11 $0B + 43 $2B K 75 $4B k 107 $6B
[ctrl-L] FF 12 $0C , 4 $2C L 76 $4C I 108 $6C
[ctr-M]CR 13 $r($0D) - 45 $2D M 77 $4D m 109 $6D
[ctr-N]SO 14 $0E . 46 $2E N 78 $4E n 110 $6E
[ctrl-0] SI 15 $0OF / 47 $%F 0 79 $4F 0 111 $6F
[ctr-P]DLE 16 $10 0 48 $30 P 80 $50 p 112 $70
[ctrl-Q]DC1 17 $11 1 49 $31 Q 81 %51 q 113 §71
[ctrl-R]DC2 18 $12 2 50 $32 R 82 $52 r 114 §72
[ctrl-S]DC3 19 $13 3 51 $33 S 83 $53 S 115 §73
[ctr-T]DC4 20 $14 4 52 $34 T 84 $54 t 116 $74
[ctr-UJNAK 21 $15 5 53 $35 U 85 $55 u 117 $75
[ctrl-V]SYN 22 $16 6 54 $36 v 86 $56 v 118 $76
[ctr-W]ETB 23 $17 7 55 $37 W 87 $57 w 119 §77
[ctr-X]CAN 24 $18 8 56 $38 X 88 $58 X 120 $78
[ctr-Y]EM 25 $19 9 57 $39 Y 89 $59 y 121 $79
[ctrl-Z]SUB 26 $1A : 58 $3A YA 90 $5A z 122 $7A
ctrl-{ ESC 27 $1B ; 59 $3B [91 $5B { 123 $7B
[ctrl-\]| FS 28 $1C < 60 $3C \ 92 $5C | 124 $7C
ctrl-] GS 29 $1D = 61 $3D] 93 $5D } 125 $7D
[ct-"]RS 30 $IE > 62 $3E A 94 $5E ~ 126 $7E

[ctrl-JUS 31 $1F ? 63 $3F 95 $5F DEL 127 $7F

Rockwel I Autom atlon Rockwell Automation provides technical information on the web to assist you in using
our products. At http://support.rockwellautomation.com, you can find technical

Support manuals, a knowledge base of FAQs, technical and application notes, sample code and
links to software service packs, and a MySupport feature that you can customize to
make the best use of these tools.

For an additional level of technical phone support for installation, configuration and
troubleshooting, we offer TechConnect Support programs. For more information,
contact your local distributor or Rockwell Automation representative, or visit
http://support.rockwellautomation.com.

Installation Assistance

If you experience a problem with a hardware module within the first 24 hours of
installation, please review the information that's contained in this manual. You can also
contact a special Customer Support number for initial help in getting your module up
and running:

United States 1.440.646.3223

Monday — Friday, 8am — 5pm EST

Outside United Please contact your local Rockwell Automation representative for any
States technical support issues.

New Product Satisfaction Return

Rockwell tests all of our products to ensure that they are fully operational when
shipped from the manufacturing facility. However, if your product is not functioning
and needs to be returned:

United States Contact your distributor. You must provide a Customer Support case
number (see phone number above to obtain one) to your distributor in
order to complete the return process.

Outside United Please contact your local Rockwell Automation representative for
States return procedure.

www.rockwellautomation.com

Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212.5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36-BP 3A/B, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe: Rockwell Automation, BriihIstrae 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 6261 17741

Asia Pacific: Rockwell Automation, 55 Newton Road, #11-01/02 Revenue House, Singapore 307987, Tel: (65) 351 6723, Fax: (65) 355 1733

Publication 1756-RMO06C-EN-P - June 2003 PN 957824-67

Supersedes Publication 1756-RM006B-EN-P - May 2002 Copyright © 2003 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

% Allen-Bradley Logix5000™ Controllers Process and Drives Instructions Reference Manual

	1756-RM006C-EN-P, Logix5000 Controllers Process Control and Drives Instructions Reference Manual
	Important User Information
	Summary of Changes
	Instruction Locator
	Preface
	Introduction
	Who Should Use This Manual
	Purpose of This Manual
	Common Information for All Instructions
	Conventions and Related Terms

	Table of Contents
	1 - Process Control Instructions (ALM, D2SD, D3SD, DEDT, FGEN, LDLG, PIDE, POSP, RMPS, SCL, SRTP, TOT)
	Introduction
	Alarm (ALM)
	Discrete 2-State Device (D2SD)
	Discrete 3-State Device (D3SD)
	Deadtime (DEDT)
	Function Generator (FGEN)
	Lead-Lag (LDLG)
	Enhanced PID (PIDE)
	Position Proportional (POSP)
	Ramp/Soak (RMPS)
	Scale (SCL)
	Split Range Time Proportional (SRTP)
	Totalizer (TOT)

	2 - Drives Instructions (INTG, PI, PMUL, SCRV, SOC, UPDN)
	Introduction
	Integrator (INTG)
	Proportional + Integral (PI)
	Pulse Multiplier (PMUL)
	S-Curve (SCRV)
	Second-Order Controller (SOC)
	Up/Down Accumulator (UPDN)

	3 - Filter Instructions (DERV, HPF, LDL2, LPF, NTCH)
	Introduction
	Derivative (DERV)
	High Pass Filter (HPF)
	Second-Order Lead Lag (LDL2)
	Low Pass Filter (LPF)
	Notch Filter (NTCH)

	4 - Select/Limit Instructions (ESEL, HLL, MUX, RLIM, SEL, SNEG, SSUM)
	Introduction
	Enhanced Select (ESEL)
	High/Low Limit (HLL)
	Multiplexer (MUX)
	Rate Limiter (RLIM)
	Select (SEL)
	Selected Negate (SNEG)
	Selected Summer (SSUM)

	5 - Statistical Instructions (MAVE, MAXC, MINC, MSTD)
	Introduction
	Moving Average (MAVE)
	Maximum Capture (MAXC)
	Minimum Capture (MINC)
	Moving Standard Deviation (MSTD)

	6 - Move/Logical Instructions (DFF, JKFF, RESD, SETD)
	Introduction
	D Flip-Flop (DFF)
	JK Flip-Flop (JKFF)
	Reset Dominant (RESD)
	Set Dominant (SETD)

	A - Function Block Attributes
	Introduction
	Choose the Function Block Elements
	Latching Data
	Order of Execution
	Function Block Responses to Overflow Conditions
	Timing Modes
	Program/Operator Control

	B - Structured Text Programming
	Introduction
	Structured Text Syntax
	Assignments
	Expressions
	Instructions
	Constructs
	IF...THEN
	CASE...OF
	FOR…DO
	WHILE…DO
	REPEAT…UNTIL
	Comments

	C - Common Attributes
	Introduction
	Immediate Values
	Data Conversions

	D - Function Block Faceplate Controls
	Introduction
	ALM Control
	ESEL Control
	TOT Control
	RMPS Control
	D2SD Control
	D3SD Control
	PIDE Control

	Index
	How Are We Doing?
	ASCII Character Codes
	Rockwell Automation Support
	Back Cover

