
SFC and ST
Programming
Languages
Excerpt from the Logix5000
Controllers Common Procedures,
publication 1756-PM001

Programming Manual

Important User Information Solid state equipment has operational characteristics differing from those of
electromechanical equipment. Safety Guidelines for the Application,
Installation and Maintenance of Solid State Controls (Publication SGI-1.1
available from your local Rockwell Automation sales office or online at
http://www.ab.com/manuals/gi) describes some important differences
between solid state equipment and hard-wired electromechanical devices.
Because of this difference, and also because of the wide variety of uses for
solid state equipment, all persons responsible for applying this equipment
must satisfy themselves that each intended application of this equipment is
acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for
indirect or consequential damages resulting from the use or application of
this equipment.

The examples and diagrams in this manual are included solely for illustrative
purposes. Because of the many variables and requirements associated with
any particular installation, Rockwell Automation, Inc. cannot assume
responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to
use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without
written permission of Rockwell Automation, Inc. is prohibited.

Throughout this manual we use notes to make you aware of safety
considerations.

WARNING
Identifies information about practices or circumstances
that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property
damage, or economic loss.

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

ATTENTION Identifies information about practices or circumstances
that can lead to personal injury or death, property
damage, or economic loss. Attentions help you:

• identify a hazard

• avoid a hazard

• recognize the consequence

SHOCK HAZARD Labels may be located on or inside the drive to alert
people that dangerous voltage may be present.

BURN HAZARD Labels may be located on or inside the drive to alert
people that surfaces may be dangerous temperatures.

Preface

Purpose of this Manual This manual is an excerpt of Logix5000 Controllers Common
Procedures, publication 1756-PM001. It provides step-by-step
procedures on how to perform the following tasks, which are
common to all Logix5000™ controllers:

• Design, program, and force a sequential function chart

• Program a routine using the structured text programming
language

The term Logix5000 controller refers to any controller that is based on
the Logix5000 operating system, such as:

• CompactLogix™ controllers

• ControlLogix® controllers

• FlexLogix™ controllers

• PowerFlex® 700S with DriveLogix controllers

• SoftLogix5800™ controllers

Who Should Use this
Manual

This manual is intended for those individuals who program
applications that use Logix5000 controllers, such as:

• software engineers

• control engineers

• application engineers

• instrumentation technicians

When to Use this Manual Use this manual when you perform these actions:

• develop the basic code for your application

• modify an existing application

• perform isolated tests of your application

As you integrate your application with the I/0 devices, controllers, and
networks in your system:

• Refer to the user manual for your specific type of controller.

• Use this manual as a reference, when needed.
1 Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Preface 2
How to Use this Manual This manual is divided into the basic tasks that you perform while
programming a Logix5000 controller.

• Each chapter covers a task.

• The tasks are organized in the sequence that you will typically
perform them.

As you use this manual, you will see some terms that are formatted
differently from the rest of the text:

Text that is: Identifies: For example: Means:

Italic the actual name of an item that you
see on your screen or in an example

Right-click User-Defined … Right-click on the item that is named
User-Defined.

bold an entry in the “Glossary” Type a name … If you want additional information, refer
to name in the “Glossary.”

If you are viewing the PDF file of the
manual, click name to jump to the
glossary entry.

courier information that you must supply
based on your application (a
variable)

Right-click
name_of_program …

You must identify the specific program in
your application. Typically, it is a name or
variable that you have defined.

enclosed in brackets a keyboard key Press [Enter]. Press the Enter key.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Table of Contents

Chapter 5
Design a Sequential Function
Chart

When to Use This Procedure . 5-1
How to Use This Procedure. 5-1
What is a Sequential Function Chart? 5-2
How to Design an SFC: Overview 5-4
Define the Tasks . 5-5
Choose How to Execute the SFC . 5-6
Define the Steps of the Process . 5-6

Follow These Guidelines . 5-7
SFC_STEP Structure . 5-8

Organize the Steps . 5-12
Overview . 5-12
Sequence. 5-14
Selection Branch . 5-15
Simultaneous Branch . 5-16
Wire to a Previous Step . 5-17

Add Actions for Each Step . 5-18
How Do You Want to Use the Action? 5-18
Use a Non-Boolean Action . 5-18
Use a Boolean Action. 5-20
SFC_ACTION Structure. 5-20

Describe Each Action in Pseudocode 5-21
Choose a Qualifier for an Action . 5-23
Define the Transition Conditions . 5-24

Transition Tag . 5-26
How Do You Want to Program the Transition? 5-26
Use a BOOL Expression . 5-26
Call a Subroutine . 5-27

Transition After a Specified Time . 5-28
Turn Off a Device at the End of a Step 5-32

Choose a Last Scan Option. 5-32
Use the Don’t Scan Option. 5-34
Use the Programmatic Reset Option 5-35
Use the Automatic Reset Option 5-38

Keep Something On From Step-to-Step 5-40
How Do You Want to Control the Device? 5-40
Use a Simultaneous Branch . 5-41
Store and Reset an Action. 5-42
Use One Large Step . 5-44

End the SFC . 5-45
At the End of the SFC, What Do You Want to Do?. 5-45
Use a Stop Element . 5-45
Restart (Reset) the SFC . 5-46
SFC_STOP Structure . 5-47

Nest an SFC . 5-49
Pass Parameters . 5-50
i Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Table of Contents ii
Configure When to Return to the OS/JSR 5-50
Pause or Reset an SFC. 5-51
Execution Diagrams . 5-51

Chapter 6
Program a Sequential Function
Chart

When to Use This Procedure . 6-1
Before You Use This Procedure. 6-1
How to Use This Procedure. 6-2
Add an SFC Element . 6-3

Add and Manually Connect Elements 6-3
Add and Automatically Connect Elements 6-4
Drag and Drop Elements . 6-4

Create a Simultaneous Branch . 6-5
Start a Simultaneous Branch . 6-5
End a Simultaneous Branch . 6-5

Create a Selection Branch . 6-6
Start a Selection Branch . 6-6
End a Selection Branch . 6-7

Set the Priorities of a Selection Branch 6-8
Return to a Previous Step . 6-9

Connect a Wire to the Step. 6-9
Hide a Wire. 6-10
Show a Hidden Wire . 6-10

Rename a Step . 6-11
Configure a Step . 6-11

Assign the Preset Time for a Step 6-11
Configure Alarms for a Step . 6-12
Use an Expression to Calculate a Time 6-12

Rename a Transition . 6-14
Program a Transition. 6-14

Enter a BOOL Expression. 6-14
Call a Subroutine . 6-15

Add an Action. 6-16
Rename an Action. 6-16
Configure an Action . 6-17

Change the Qualifier of an Action. 6-17
Calculate a Preset Time at Runtime 6-18
Mark an Action as a Boolean Action 6-19

Program an Action . 6-19
Enter Structured Text . 6-19
Call a Subroutine . 6-21

Assign the Execution Order of Actions 6-22
Document the SFC . 6-23

Add Structured Text Comments 6-23
Add a Tag Description . 6-24
Add a Text Box . 6-25
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Table of Contents iii
Show or Hide Text Boxes or Tag Descriptions 6-26
Show or Hide Text Boxes or Descriptions. 6-26
Hide an Individual Tag Description 6-27

Configure the Execution of the SFC 6-28
Verify the Routine . 6-29

Chapter 7
Program Structured Text When to Use This Chapter. 7-1

Structured Text Syntax. 7-1
Assignments . 7-2

Specify a non-retentive assignment 7-3
Assign an ASCII character to a string. 7-4

Expressions . 7-4
Use arithmetic operators and functions 7-6
Use relational operators . 7-7
Use logical operators . 7-9
Use bitwise operators. 7-10
Determine the order of execution. 7-10

Instructions. 7-11
Constructs. 7-12
IF...THEN . 7-13
CASE...OF. 7-16
FOR…DO. 7-19
WHILE…DO. 7-22
REPEAT…UNTIL . 7-25
Comments . 7-28

Chapter 14
Force Logic Elements When to Use This Procedure . 14-1

How to Use This Procedure. 14-1
Precautions. 14-2

Enable Forces . 14-2
Disable or Remove a Force . 14-3

Check Force Status . 14-4
Online Toolbar . 14-4
FORCE LED . 14-5
GSV Instruction . 14-5

What to Force . 14-6
When to Use an I/O Force . 14-6

Force an Input Value . 14-7
Force an Output Value. 14-7

Add an I/O Force . 14-8
When to Use Step Through . 14-9
Step Through a Transition or a Force of a Path. 14-9
When to Use an SFC Force . 14-9
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Table of Contents iv
Force a Transition . 14-9
Force a Simultaneous Path . 14-11

Add an SFC Force . 14-12
Remove or Disable Forces . 14-13

Remove an Individual Force. 14-13
Disable All I/O Forces . 14-14
Remove All I/O Forces. 14-14
Disable All SFC Forces . 14-14
Remove All SFC Forces . 14-14
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Chapter 5

Design a Sequential Function Chart

When to Use This
Procedure

Use this procedure to design a sequential function chart (SFC) for
your process or system. An SFC is similar to a flowchart of your
process. It defines the steps or states through which your system
progresses. Use the SFC to:

• organize the functional specification for your system

• program and control your system as a series of steps and
transitions

By using an SFC to specify your process, you gain these advantages:

• Since an SFC is a graphical representation of your process, it is
easier to organize and read than a textual version. In addition,
RSLogix 5000 software lets you:

– add notes that clarify steps or capture important information
for use later on

– print the SFC to share the information with other individuals

• Since Logix5000 controllers support SFCs, you do not have to
enter the specification a second time. You are programming
your system as you specify it.

By using an SFC to program your process, you gain these advantages:

• graphical division of processes into its major logic pieces (steps)

• faster repeated execution of individual pieces of your logic

• simpler screen display

• reduced time to design and debug your program

• faster and easier troubleshooting

• direct access to the point in the logic where a machine faulted

• easy updates and enhancements

How to Use This Procedure Typically, the development of an SFC is an iterative process. If you
prefer, you can use RSLogix 5000 software to draft and refine your
SFC. For specific procedures on how to enter an SFC, see “Program a
Sequential Function Chart” on page 6-1.
1 Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-2 Design a Sequential Function Chart
What is a Sequential
Function Chart?

A sequential function chart (SFC) is similar to a flowchart. It uses
steps and transitions to perform specific operations or actions.
Figure 5.1 and Figure 5.2 is an example that shows the elements of an
SFC:

Figure 5.1 SFC Example

A step represents a major function of your process. It contains the
actions that occur at a particular time, phase, or station.

An action is one of the functions that a step
performs.

A simultaneous branch executes more than 1 step at
the same time.

A transition is the true or false condition that tells the SFC
when to go to the next step.

(continued on next page)

A qualifier determines when an action starts and stops.

Show or hide an
action.

JSR instruction calls a subroutine.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-3
Figure 5.2 SFC Example (continued from previous page)

A text box lets you add descriptive text or notes to your SFC.

A selection branch chooses between
different execution paths.

A wire connects one element to another element anywhere on the chart. This wire takes you to the
conveyor step on Figure 5.1 on the previous page.

A stop lets you stop and wait for a command to restart.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-4 Design a Sequential Function Chart
How to Design an SFC:
Overview

To design an SFC, you perform these tasks:

The remaining sections of this chapter describe in detail how to
perform each task.

Define the Tasks

Choose How to Execute the SFC

Define the Steps of the Process

Organize the Steps

Add Actions for Each Step

Describe Each Action in Pseudocode

Choose a Qualifier for an Action

Define the Transition Conditions

Transition After a Specified Time

Turn Off a Device at the End of a Step

Keep Something On From Step-to-Step

End the SFC

Nest an SFC

Configure When to Return to the OS/JSR

Pause or Reset an SFC
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-5
Define the Tasks The first step in the development of an SFC is to separate the
configuration and regulation of devices from the commands to those
devices. Logix5000 controllers let you divide your project into one
continuous task and multiple periodic tasks.

1. Organize your project as follows:

2. For those functions that go in a periodic task, group the
functions according to similar update rates. Create a periodic
task for each update rate.

For example, your 2-state devices may require faster updates
than your PID loops. Use separate periodic tasks for each.

The following example shows a project that uses two periodic tasks to
regulate motors, valves, and temperature loops. The project uses an
SFC to control the process.

These functions: Go here:

configure and regulate devices periodic task

command a device to a specific state SFC in the continuous task

sequence the execution of your process

EXAMPLE Define the Tasks

This task (continuous) executes the sequential function
chart (SFC). The SFC commands the specific state or
temperature for each device or temperature loop.

This task (periodic) uses function block diagrams to turn on or
off motors and open or close valves. The SFC in MainTask
commands the state for each device. The function block
diagrams set and maintain that state.

This task (periodic) uses function block diagrams to configure
and regulate temperature loops. The SFC in MainTask
commands the temperatures. The function block diagrams set
and maintain those temperatures.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-6 Design a Sequential Function Chart
Choose How to Execute the
SFC

To execute an SFC, either configure it as the main routine for a
program or call it as a subroutine.

If the SFC uses boolean actions, then other logic must run
independent of the SFC and monitor status bits of the SFC.

Define the Steps of the
Process

A step represents a major function of your process. It contains the
actions that occur at a particular time, phase, or station.

A transition ends a step. The transition defines the physical
conditions that must occur or change in order to go to the next step.

If: Then:

The SFC is the only routine in the program. Configure the SFC as the main routine for
the program.

The SFC calls all the other routines of the
program.

The program requires other routines to
execute independent of the SFC.

1. Configure another routine as the
main routine for the program.

2. Use the main routine to call the SFC
as a subroutine.

The SFC uses boolean actions.

Step

MIX
A step executes continuously until a
transition tells the SFC to go to the
next step.

Transition

• If true, go to the next step.

…and do this

Actions

Do this…
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-7
Follow These Guidelines

As you define the steps of your process, follow these guidelines:

• Start with large steps and refine the steps in several passes.

• When you first open an SFC routine, it contains an initial step
and transition. Use this step to initialize your process.

• To identify a step, look for a physical change in your system,
such as new part that is in position, a temperature that is
reached, a preset time that is reached, or a recipe selection that
occurs. The step is the actions that take place before that
change.

• Stop when your steps are in meaningful increments. For
example:

Clean

Air_Flow Elec_Charg

third pass

Transfer_In

Clean

Transfr_Out

Paint

second pass

Paint

first pass

Paint_Flow

Transfer_In

Transfr_Out

This organization of steps: Is:

produce_solution probably too large

set_mode, close_outlet, set_temperature,
open_inlet_a, close_inlet_a, set_timer,
reset_temperature, open_outlet, reset_mode

probably too small

preset_tank, add_ingredient_a, cook, drain probably about right

initial step

initial transition
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-8 Design a Sequential Function Chart
SFC_STEP Structure

Each step uses a tag to provide information about the step. Access this
information via either the Step Properties dialog box or the Monitor
Tags tab of the Tags window:

If you want to: Then check or set
this member:

Data type: Details:

determine how long a step has
been active (milliseconds)

T DINT When a step becomes active, the Timer (T) value resets and then
starts to count up in milliseconds. The timer continues to count up
until the step goes inactive, regardless of the Preset (PRE) value.

flag when the step has been
active for a specific length of
time (milliseconds)

PRE DINT Enter the time in the Preset (PRE) member. When the Timer (T)
reaches the Preset value, the Done (DN) bit turns on and stays on
until the step becomes active again.

As an option, enter a numeric expression that calculates the time
at runtime.

DN BOOL When the Timer (T) reaches the Preset (PRE) value, the Done (DN)
bit turns on and stays on until the step becomes active again.

flag if a step did not execute
long enough

LimitLow DINT Enter the time in the LimitLow member (milliseconds).

• If the step goes inactive before the Timer (T) reaches the
LimitLow value, the AlarmLow bit turns on.

• The AlarmLow bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.

As an option, enter a numeric expression that calculates the time
at runtime.

AlarmEn BOOL To use the alarm bits, turn on (check) the AlarmEnable (AlarmEn)
bit.

AlarmLow BOOL If the step goes inactive before the Timer (T) reaches the LimitLow
value, the AlarmLow bit turns on.

• The bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-9
flag if a step is executing too
long

LimitHigh DINT Enter the time in the LimitHigh member (milliseconds).

• If the Timer (T) reaches the LimitHigh value, the AlarmHigh
bit turns on.

• The AlarmHigh bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.

As an option, enter a numeric expression that calculates the time
at runtime.

AlarmEn BOOL To use the alarm bits, turn on (check) the AlarmEnable (AlarmEn)
bit.

AlarmHigh BOOL If the Timer (T) reaches the LimitHigh value, the AlarmHigh bit
turns on.

• The bit stays on until you reset it.

• To use this alarm function, turn on (check) the AlarmEnable
(AlarmEn) bit.

do something while the step is
active (including first and last
scan)

X BOOL The X bit is on the entire time the step is active (executing).

Typically, we recommend that you use an action with a
N Non-Stored qualifier to accomplish this.

do something one time when the
step becomes active

FS BOOL The FS bit is on during the first scan of the step.

Typically, we recommend that you use an action with a P1 Pulse
(Rising Edge) qualifier to accomplish this.

do something while the step is
active, except on the first and
last scan

SA BOOL The SA bit is on when the step is active except during the first and
last scan of the step.

do something one time on the
last scan of the step

LS BOOL The LS bit is on during the last scan of the step.

Use this bit only if you do the following: On the Controller
Properties dialog box, SFC Execution tab, set the Last Scan of
Active Step to Don’t Scan or Programmatic reset.

Typically, we recommend that you use an action with a P0 Pulse
(Falling Edge) qualifier to accomplish this.

If you want to: Then check or set
this member:

Data type: Details:
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-10 Design a Sequential Function Chart
The following diagram shows the relationship of the X, FS, SA, and LS
bits.

determine the target of an SFC
Reset (SFR) instruction

Reset BOOL An SFC Reset (SFR) instruction resets the SFC to a step or stop
that the instruction specifies.

• The Reset bit indicates to which step or stop the SFC will
go to begin executing again.

• Once the SFC executes, the Reset bit clears.

determine the maximum time
that a step has been active
during any of its executions

TMax DINT Use this for diagnostic purposes. The controller clears this value
only when you choose the Restart Position of Restart at initial step
and the controller changes modes or experiences a power cycle.

determine if the Timer (T) value
rolls over to a negative value

OV BOOL Use this for diagnostic purposes.

determine how many times a
step has become active

Count DINT This is not a count of scans of the step.

• The count increments each time the step becomes active.

• It increments again only after the step goes inactive and
then active again.

• The count resets only if you configure the SFC to restart at
the initial step. With that configuration, it resets when the
controller changes from program mode to run mode.

use one tag for the various
status bits of this step

Status DINT For this member: Use this bit:

Reset 22

AlarmHigh 23

AlarmLow 24

AlarmEn 25

OV 26

DN 27

LS 28

SA 29

FS 30

X 31

If you want to: Then check or set
this member:

Data type: Details:
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-11
step_name.FS

step_name.X

step_name.LS

step_name.SA

first scan last scan
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-12 Design a Sequential Function Chart
Organize the Steps Once you define the steps of your process, organize them into
sequences, simultaneous branches, selection branches, or loops.

Overview

To: Use this structure: With these considerations:

Execute 1 or more steps in sequence:

• One executes repeatedly.

• Then the next executes repeatedly.

Sequence The SFC checks the transition at the end of the
step:

• If true, the SFC goes to the next step.

• If false, the SFC repeats the step.

• Choose between alternative steps
or groups of steps depending on
logic conditions

• Execute a step or steps or skip the
step or steps depending on logic
conditions

Selection Branch • It is OK for a path to have no steps and
only a transition. This lets the SFC skip
the selection branch.

• By default, the SFC checks from left to
right the transitions that start each
path. It takes the first true path.

• If no transitions are true, the SFC
repeats the previous step.

• RSLogix 5000 software lets you change
the order in which the SFC checks the
transitions.

Execute 2 or more steps at the same time.
All paths must finish before continuing the
SFC

Simultaneous Branch • A single transition ends the branch.

• The SFC checks the ending transition
after the last step in each path has
executed at least once. If the transition
is false, the SFC repeats the previous
step.

Loop back to a previous step Wire to a Previous Step • Connect the wire to the step or
simultaneous branch to which you want
to go.

• Do not wire into, out of, or between a
simultaneous branch.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-13
Here are some examples of SFC structures for different situations:

Example situation: Example solution:

Station 45 and 46 of an assembly line work on parts
simultaneously. When both stations are done, the parts move
down 1 station.

Simultaneous Branch

Depending on the build code, a station either drills or polishes. Selection Branch

To simplify my programming, I want to separate communications
and block transfers from other control logic. All occur at the same
time.

Simultaneous Branch

In a heat treating area, the temperature ramps up at a specific
rate, maintains that temperature for a specific duration, and then
cools at a specific rate.

Sequence

At station 12, the machine drills, taps, and bolts a part. The steps
occur one after the other.

Sequence

Step 12 inspects a process for the correct mix of chemicals.

• If OK, then continue with the remaining steps.

• If not OK, go to the top of the SFC and purge the system.

Wire

45 46

PolishDrill

CommsControl BTs

Ramp

Maintain

Cool

Drill

Tap

Bolt

Step 12

OKNot OK

start of SFC
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-14 Design a Sequential Function Chart
Sequence

A sequence is a group of steps that execute one after the other.

For a detailed diagram of the execution of a sequence of steps, see
Figure 5.5 on page 5-52.

To override the state of a transition, see “Force Logic Elements” on
page 14-1.

do this…

THEN this…

THEN this…
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-15
Selection Branch

A selection branch represents a choice between one path (step or
group of steps) or another path (i.e., an OR structure).

• Only one path executes.

• By default the SFC checks the transitions from left to right.

– The SFC takes the first true path.

– RSLogix 5000 software lets you change the order in which the
SFC checks the transitions. See “Program a Sequential
Function Chart” on page 6-1.

For a detailed diagram of the execution of a selection branch, see
Figure 5.7 on page 5-54.

To override the state of a transition, see “Force Logic Elements” on
page 14-1.

single horizontal
line

This path skips the
structure (does
nothing).

each path has its own
transition

do this… OR this… OR this…

single horizontal
line
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-16 Design a Sequential Function Chart
Simultaneous Branch

A simultaneous branch represents paths (steps or group of steps) that
occur at the same time (i.e., an AND structure).

• All paths execute.

• All paths must finish before continuing with the SFC.

• The SFC checks the transition after the last step of each path has
executed at least once.

For a detailed diagram of the execution of a simultaneous branch, see
Figure 5.6 on page 5-53.

To override the branch and prevent a path from executing, see “Force
Logic Elements” on page 14-1.

double horizontal
line

one transition for all paths

do this… AND this…

double horizontal
line

AND this…
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-17
Wire to a Previous Step

In addition to connecting steps in sequences, simultaneous branches,
and selection branches, you can connect a step to a previous point in
your SFC. This lets you:

• loop back and repeat steps

• return to the beginning of the SFC and start over

For example:

…go to this
step

If this condition
is true…

simple loop that repeats the
entire SFC

path of a selection branch that returns to a
previous step
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-18 Design a Sequential Function Chart
Add Actions for Each Step Use actions to divide a step into the different functions that the step
performs, such as commanding a motor, setting the state of a valve, or
placing a group of devices in a specific mode.

How Do You Want to Use the Action?

There are two types of actions:

Use a Non-Boolean Action

A non-boolean action contains the logic for the action. It uses
structured text to execute assignments and instructions or call a
subroutine.

With non-boolean actions, you also have the option to postscan
(automatically reset) the assignments and instructions before leaving a
step:

• During postscan the controller executes the assignments and
instructions as if all conditions are false.

• The controller postscans both embedded structured text and any
subroutine that the action calls.

To automatically reset assignments and instructions, see “Turn Off a
Device at the End of a Step” on page 5-32.

Step

…and do this
MIX

Actions

Do this…

If you want to: Then:

execute structured text directly in the SFC Use a Non-Boolean Action

call a subroutine

use the automatic reset option to reset data upon leaving
a step

only set a bit and program other logic to monitor the bit to
determine when to execute.

Use a Boolean Action
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-19
To program a non-boolean action, you have the following options:

You cannot reuse a non-boolean action within the same SFC except
to reset a stored action. Only one instance of a specific non-boolean
action is permitted per SFC.

If you want to: Then:

• execute your logic without additional
routines

• use structured text assignments,
constructs, and instructions

Embed structured text.

For example:

When the S_Complete_the_Batch step is active, the S_Open_Outlet action executes. The
action sets the Outlet.ProgCommand tag equal to 1, which opens the outlet valve.

• re-use logic in multiple steps

• use another language to program the
action, such as ladder logic

• nest an SFC

Call a subroutine.

For example:

When the S_Complete_the_Batch step is active, the S_Open_Outlet action executes. The
action calls the Open_Outlet routine.

When the Open_Outlet routine executes, the OTE instruction sets the
Outlet.ProgCommand tag equal to 1, which opens the outlet valve.

Open_Outlet Routine
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-20 Design a Sequential Function Chart
Use a Boolean Action

A boolean action contains no logic for the action. It simply sets a bit in
its tag (SFC_ACTION structure). To do the action, other logic must
monitor the bit and execute when the bit is on.

With boolean actions, you have to manually reset the assignments and
instructions that are associated with the action. Since there is no link
between the action and the logic that performs the action, the
automatic reset option does not effect boolean actions.

Here is an example:

When the S_Complete_the_Batch step is active, the S_Open_Outlet action executes. When
the action is active, its Q bit turns on.

A ladder logic routine monitors the Q bit (S_Open_Outlet.Q). When the Q bit is on, the JSR
instruction executes and opens the outlet valve.

You can reuse a boolean action multiple times within the same SFC.

SFC_ACTION Structure

Each action (non-boolean and boolean) uses a tag to provide
information about the action. Access this information via either the
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-21
Action Properties dialog box or the Monitor Tags tab of the Tags
window:

Describe Each Action in
Pseudocode

To organize the logic for an action, first describe the action in
pseudocode. If you are unfamiliar with pseudocode, follow these
guidelines:

• Use a series of short statements that describe exactly what
should happen.

If you want to: Then check or set
this member:

Data type: Details:

determine when the action is
active

Q BOOL The status of the Q bit depends on whether the action is a boolean
action or non-boolean action:

If the action is: Then the Q bit is:

boolean on (1) the entire time the action is active,
including the last scan of the action

non-boolean on (1) while the action is active but

off (0) at the last scan of the action

To use a bit to determine when an action is active, use the Q bit.

A BOOL The A bit is on the entire time the action is active.

determine how long an action
has been active (milliseconds)

T DINT When an action becomes active, the Timer (T) value resets and
then starts to count up in milliseconds. The timer continues to
count up until the action goes inactive, regardless of the Preset
(PRE) value.

use one of these time-based
qualifiers: L, SL, D, DS, SD

PRE DINT Enter the time limit or delay in the Preset (PRE) member. The
action starts or stops when the Timer (T) reaches the Preset value.

As an option, enter a numeric expression that calculates the time
at runtime.

determine how many times an
action has become active

Count DINT This is not a count of scans of the action.

• The count increments each time the action becomes
active.

• It increments again only after the action goes inactive and
then active again.

• The count resets only if you configure the SFC to restart at
the initial step. With that configuration, it resets when the
controller changes from program mode to run mode.

use one tag for the various
status bits of this action

Status DINT For this member: Use this bit:

Q 30

A 31
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-22 Design a Sequential Function Chart
• Use terms or symbols such as: if, then, otherwise, until, and, or,
=, >, <.

• Sequence the statements in the order that they should execute.

• If necessary, name the conditions to check first (when 1st) and
then the action to take second (what 2nd).

Enter the pseudocode into the body of the action. After you enter the
pseudocode, you can:

• Refine the pseudocode so it executes as structured text.

• Use the pseudocode to design your logic and leave the
pseudocode as comments. Since all structured text comments
download to the controller, your pseudocode is always available
as documentation for the action.

To convert the pseudocode to structured text comments, add the
following comment symbols:

For a comment: Use one of these formats:

on a single line //comment

that spans more than one line (*start of comment . . . end of
comment*)

/*start of comment . . . end of
comment*/
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-23
Choose a Qualifier for an
Action

Each action (non-boolean and boolean) uses a qualifier to determine
when it starts and stops.

The default qualifier is Non-Stored. The action starts when the step is
activated and stops when the step is deactivated.

To change when an action starts or stops, assign a different qualifier:

Table 5.1 Choose a Qualifier for an Action

If you want the action to: And: Then assign this
qualifier:

Which
means:

start when the step is activated stop when the step is deactivated N Non-Stored

execute only once P1 Pulse (Rising
Edge)

stop before the step is deactivated or when the
step is deactivated

L Time Limited

stay active until a Reset action turns off this action S Stored

stay active until a Reset action turns off this action

or a specific time expires, even if the step is
deactivated

SL Stored and
Time Limited

start a specific time after the step is activated
and the step is still active

stop when the step is deactivated D Time Delayed

stay active until a Reset action turns off this action DS Delayed and
Stored

start a specific time after the step is activated,
even if the step is deactivated before this time

stay active until a Reset action turns off this action SD Stored and
Time Delayed

execute once when the step is activated execute once when the step is deactivated P Pulse

start when the step is deactivated execute only once P0 Pulse (Falling
Edge)

turn off (reset) a stored action:

• S Stored

• SL Stored and Time Limited

• DS Delayed and Stored

• SD Stored and Time Delayed

R Reset
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-24 Design a Sequential Function Chart
Define the Transition
Conditions

The transition is the physical conditions that must occur or change in
order to go to the next step.

Transitions occur in the following places:

transition If true, go to the next step.

The transition tells the SFC when to go to the
next step.

For this structure: Make sure that:

sequence A transition is between each step.

selection branch Transitions are inside the horizontal lines.

simultaneous branch Transitions are outside the horizontal lines.

steps

transitions

transitions

transitions
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-25
Here are two examples of transitions:

To override the state of a transition, see “Force Logic Elements” on
page 14-1.

EXAMPLE You want to:

a. Turn on 2 compressors. When a compressor is
on, the Device1State bit is on.

b. When both compressors are on, go to the next
step.

Solution:

EXAMPLE You want to:

a. Package the product. When the product is in
the package, the package_done bit turns on.

b. Pack the product either 8 per carton or 16 per
carton.

Solution:

Init_Done compressor_1.Device1State = on (1)

and

Init

carton_16

Package

package_done = on (1) and
carton_size = 16

carton_8

Pack_16Pack_8

package_done = on (1) and
carton_size = 8
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-26 Design a Sequential Function Chart
Transition Tag

Each transition uses a BOOL tag to represent the true or false state of
the transition.

How Do You Want to Program the Transition?

To program the transition, you have these options:

Use a BOOL Expression

The simplest way to program the transition is to enter the conditions
as a BOOL expression in structured text. A BOOL expression uses
bool tags, relational operators, and logical operators to compare
values or check if conditions are true or false. For example, tag1>65.

Here are some examples of BOOL expressions.

If the transition is: The value is: And:

true 1 The SFC goes to the next step.

false 0 The SFC continues to execute the
current step.

If you want to: Then:

enter the conditions as an expression in
structured text

Use a BOOL Expression

enter the conditions as instructions in
another routine

Call a Subroutine

use the same logic for multiple transitions

bool_tag_a bool_tag_a &
bool_tag_b

dint_tag_a > 8
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-27
Call a Subroutine

To use a subroutine to control a transition, include an
End Of Transition (EOT) instruction in the subroutine. The EOT
instruction returns the state of the conditions to the transition, as
shown below.

1. Call a subroutine.

2. Check for the required conditions. When those conditions are
true, turn on a BOOL tag.

3. Use an EOT instruction to set the state of the transition equal to
the value of the BOOL tag. When the BOOL tag is on (true), the
transition is true.

JSR - or -

If condition_1 & condition_2 &
condition_3 then

BOOL_tag := 1;

Else

BOOL_tag := 0;

End_if;

EOT(BOOL_tag);

1

2

2

3

3

Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-28 Design a Sequential Function Chart
Transition After a Specified
Time

Each step of the SFC includes a millisecond timer that runs whenever
the step is active. Use the timer to:

• signal when the step has run for the required time and the SFC
should go to the next step

• signal when the step has run too long and the SFC should go to
an error step

Figure 5.3 The following diagram shows the action of the timer and associated bits
of a step:

step_name.X

step_name.PRE

step_name.T

step_name.DN

1 2 3 4

Description:

1. Step becomes active.

X bit turns on.

Timer (T) begins to increment.

2. Timer reaches the Preset (PRE) value of the step.

DN bit turns on.

Timer continues to increment.

3. Step becomes inactive.

X bit turns off.

Timer retains its value.

DN remains on.

4. Step becomes active.

X bit turns on.

Timer clears and then begins to increment.

DN bit turns off.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-29
Figure 5.4 The following diagram shows the action of the low and high alarms for a
step:

step_name.X

step_name.AlarmEn

step_name.T

step_name.AlarmLow

step_name.AlarmHigh

1 3 4 5 6

step_name.LimitHigh

2

step_name.LimitLow

Description:

1. AlarmEn is on. To use the low and high alarms turn this bit on. Turn the bit on via
the properties dialog box or the tag for the step.

2. Step becomes active.

X bit turns on.

Timer (T) begins to increment.

3. Step becomes inactive.

X bit turns off.

Timer retains its value.

Since Timer is less than LimitLow, AlarmLow bit turns on.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-30 Design a Sequential Function Chart
Here is an example of the use of the Preset time of a step.

4. Step becomes active.

X bit turns on.

Timer clears and then begins to increment.

AlarmLow stays on. (You have to manually turn it off.)

5. Timer reaches the LimitHigh value of the step.

AlarmHigh bit turns on.

Timer continues to increment.

6. Step becomes inactive.

X bit turns off.

Timer retains its value.

AlarmHigh stays on. (You have to manually turn it off.)

EXAMPLE Functional specification says:

a. Cook the ingredients in the tank for
20 seconds.

b. Empty the tank.

Solution:

Description:

Cook_Done

Cook Cook.PRE = 20000 ms

Cook.DN = on (1)

Empty_Tank
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-31
Here is an example of the use of the high alarm of a step.

EXAMPLE Functional specification says:

a. Home 8 devices.

b. If all 8 devices are not home within 20
seconds, then shutdown the system.

Solution:

Init_Not_OK

Init Init.LimitHigh = 20000 ms

Init.AlarmHighInit_OK

ShutdownStep_1
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-32 Design a Sequential Function Chart
Turn Off a Device at the End
of a Step

When the SFC leaves a step, you have several options on how to turn
off devices that the step turned on.

Each option requires you to make the following choices:

1. Choose a last scan option.

2. Based on the last scan option, develop your logic so that the last
scan returns data to the desired values.

Choose a Last Scan Option

On the last scan of each step, you have the following options. The
option that you choose applies to all steps in all SFCs of this
controller.

let the controller
automatically clear
data

use logic to clear
data

Automatic ResetProgrammatic Reset

If you want to: And on the last scan of a step: Then: See:

control which data to clear Execute only P and P0 actions and use them to
clear the required data.

Use the Don’t Scan Option page 5-34

Execute all actions and use either of these
options to clear the required data:

• status bits of the step or action to
condition logic

• P and P0 actions

Use the Programmatic Reset Option page 5-35

let the controller clear data Use the Automatic Reset Option page 5-38
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-33
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-34 Design a Sequential Function Chart
The following table compares the different options for handling the
last scan of a step:

Use the Don’t Scan Option

The default option for handling the last scan of a step is Don’t scan.
With this option, all data keeps its current values when the SFC leaves
a step. This requires you to use additional assignments or instructions
to clear any data that you want to turn off at the end of a step.

To turn off a device at the end of a step:

1. Make sure that the Last Scan of Active Steps property is set to the
Don’t scan option (default).

Characteristic: During the last scan of a step, this option does the following:

Don’t scan Programmatic reset Automatic reset

execution actions Only P and P0 actions execute.
They execute according to their
logic.

All actions execute according to
their logic.

• P and P0 actions execute
according to their logic.

• All other actions execute
in postscan mode.

• On the next scan of the
routine, the P and P0
actions execute in
postscan mode.

retention of data values All data keeps its current values. All data keeps its current values. • Data reverts to its values
for postscan.

• Tags to the left of [:=]
assignments clear to zero.

method for clearing data Use P and P0 actions. Use either:

• status bits of the step or
action to condition logic

• P and P0 actions

Use either:

• [:=] assignment
(non-retentive assignment)

• instructions that clear
their data during postscan

reset of a nested SFC A nested SFCs remains at its
current step.

A nested SFCs remains at its
current step.

For the Restart Position property,
if you choose the Restart at initial
step option, then:

• A nested SFC resets to its
initial step.

• The X bit of a stop element
in a nested SFC clears to
zero.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-35
2. Use a P0 Pulse (Falling Edge) action to clear the required data.
Make sure that the P0 action or actions are last in the order of
actions for the step.

During the last scan of the step, the Don’t scan option executes only
P and P0 actions. The assignments and instructions of the actions
execute according to their logic conditions.

• The controller does not execute a postscan of assignments or
instructions.

• When the SFC leaves the step, all data keeps its current values.

The following example uses an action to turn on a conveyor at the
start of a step. A different action turns off the conveyor at the end of
the step.

Use the Programmatic Reset Option

An optional method to programmatically turn off (clear) devices at the
end of a step is to execute all actions on the last scan of the step. This
lets you execute your normal logic as well as turn off (clear) devices
at the end of a step.

1. In the Last Scan of Active Steps property, choose the
Programmatic reset option:

2. Clear the required data using any of the following methods:

• To your normal logic, add logic that clears the required data.
Use the LS bit of the step or the Q bit of the action to
condition the execution of the logic.

• Use a P0 Pulse (Falling Edge) action to clear the required
data. Make sure that the P0 action or actions are last in the
order of actions for the step.

EXAMPLE Use the Don’t Scan Option

This action turns on the conveyor. When conveyor_state turns
on, the conveyor turns on.

Before the SFC leaves the step, the P0 action turns off the
conveyor. On the last scan of the step, conveyor_state turns off.
This turns off the conveyor.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-36 Design a Sequential Function Chart
During the last scan of the step, the Programmatic reset option
executes all assignments and instructions according to logic
conditions.

• The controller does not postscan the assignments or
instructions.

• When the SFC leaves the step, all data keeps its current value.

The following example uses a single action to turn on and off a
conveyor. The LS bit of the step conditions the execution of the logic.
See “SFC_STEP Structure” on page 5-8.

For an action that uses one of the stored qualifiers, use the Q bit of
the action to condition your logic. See “SFC_ACTION Structure” on
page 5-20.

You can also use a P0 Pulse (Falling Edge) action to clear data. The
following example uses an action to turn on a conveyor at the start of
a step. A different action turns off the conveyor at the end of the step.

EXAMPLE Use the Programmatic Reset Option and the LS Bit

When the step is not on its last scan (conveyor_fwd.LS = 0), this
statement turns on conveyor_state. When conveyor_state turns
on, the conveyor turns on.

On the last scan of the step (conveyor_fwd.LS =1), this
statement turns off conveyor_state. When conveyor_state turns
off, the conveyor turns off.

EXAMPLE Use the Programmatic Reset Option and the Q Bit

When the action is not on its last scan (conveyor_start.Q =1),
this statement turns on conveyor_state. When conveyor_state
turns on, the conveyor turns on.

On the last scan of the action (conveyor_start.Q =0), this
statement turns off conveyor_state. When conveyor_state turns
off, the conveyor turns off.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-37
EXAMPLE Use the Programmatic Reset Option and a P0 Action

This action turns on the conveyor. When conveyor_state turns
on, the conveyor turns on.

Before the SFC leaves the step, the P0 action turns off the
conveyor. On the last scan of the step, conveyor_state turns off.
This turns off the conveyor.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-38 Design a Sequential Function Chart
Use the Automatic Reset Option

To automatically turn off (clear) devices at the end of a step:

1. In the Last Scan of Active Steps property, choose the Automatic
reset option:

2. To turn off a device at the end of the step, control the state of
the device with an assignment or instruction such as:

• [:=] assignment (non-retentive assignment)

• Output Energize (OTE) instruction in a subroutine

During the last scan of each step, the Automatic reset option does the
following:

• execute P and P0 actions according to their logic conditions

• clear tags to the left of [:=] assignments

• execute a postscan of embedded structured text

• execute a postscan of any subroutine that an action calls via a
Jump to Subroutine (JSR) instruction

• reset any nested SFC (SFC that an action calls as a subroutine)

As a general rule, the postscan executes instructions as if all
conditions are false. For example, the Output Energize (OTE)
instruction clears its data during postscan.

Some instructions do not follow the general rule during postscan. For
a description of how a specific instruction executes during postscan,
see the following manuals:

• Logix5000 Controllers General Instructions Reference Manual,
publication 1756-RM003

• Logix5000 Controllers Process and Drives Instructions Reference
Manual, publication 1756-RM006

• Logix5000 Controllers Motion Instruction Set Reference Manual,
publication 1756-RM007

IMPORTANT The postscan of an action actually occurs when the
action goes from active to inactive. Depending on
the qualifier of the action, the postscan could occur
before or after the last scan of the step.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-39
Here is an example that uses a non-retentive assignment to control a
conveyor. It turns on a conveyor at the start of a step and
automatically turns off the conveyor when the step is done.

EXAMPLE Automatically Clear Data

This action turns on the conveyor. When conveyor_state turns
on, the conveyor turns on.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-40 Design a Sequential Function Chart
Keep Something On From
Step-to-Step

How Do You Want to Control the Device?

To provide bumpless control of a device during more than one time
or phase (step), do one of the following:

Option: Example:

Use a Simultaneous Branch

Make a separate step that controls the device.

Store and Reset an Action

Note the step that turns on the device and the
step that turns off the device.

Later, define a Stored and Reset Action pair to
control the device.

Use One Large Step

Use one large step that contains all the actions
that occur while the device is on.

Fan

Clean

Paint

Transfer_In

Transfr_Out

turn on the fan

Clean

Paint

turn off the fan

Transfer_In

Transfr_Out

transfer, paint, clean,
transfer, control the fan

Paint
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-41
Use a Simultaneous Branch

A simple way to control a device or devices during one or more steps
is to create a separate step for the devices. Then use a simultaneous
branch to execute the step during the rest of the process.

Here is an example:

EXAMPLE A paint operation does the following:

1. Transfer the product into the paint shop.

2. Paint the product using 3 separate paint guns.

3. Clean the guns.

4. Transfer the product to the paint ovens.

During the entire process, the system must control the shop fans.

Solution:

Fan

Clean

Air_Flow Elec_ChargPaint_Flow

Transfer_In

Transfr_Out
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-42 Design a Sequential Function Chart
Store and Reset an Action

Typically, an action turns off (stops executing) when the SFC goes to
the next step. To keep a device on from step to step without a bump,
store the action that controls the device:

1. In the step that turns on the device, assign a stored qualifier to
the action that controls the device. For a list of stored qualifiers,
see Table 5.1 on page 5-23.

2. In the step that turns off the device, use a Reset action.

The following figure shows the use of a stored action.

When the SFC leaves the step that stores the action, RSLogix 5000
software continues to show the stored action as active. (By default, a
green border displays around the action.) This lets you know that the
SFC is executing the logic of that action.

Action_Name

step that starts the action

S

action that you want to
execute for more than
one step

more steps

same name as the stored
action

R Action_Name

step that stops the action
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-43
To use a stored action, follow these guidelines:

• The Reset action only turns off the stored action. It does not
automatically turn off the devices of the action. To turn off the
device, follow the Reset action with another action that turns off
the device. Or use the Automatic reset option described on
page 5-38.

• Before the SFC reaches a stop element, reset any stored actions
that you do not want to execute at the stop. An active stored
action remains active even if the SFC reaches a stop.

• Use caution when you jump in between a step that stores an
action and a step that resets the action. Once you reset an
action, it only starts when you execute the step that stores the
action.

In the following example, steps 1 - 4 require a fan to be on. At
the end of step_4, the fan is reset (turned off). When the SFC
jumps back to step_3, the fan remains off.

To turn the fan back on, the SFC has to jump back to step_1.

turn on the fan
(stored)

turn off the fan
(reset)

step_1

step_2

step_3

step_4
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-44 Design a Sequential Function Chart
Use One Large Step

If you use one large step for multiple functions, then use additional
logic to sequence the functions. One option is to nest an SFC within
the large step.

In the following example, a step turns on a fan and then calls another
SFC. The nested SFC sequences the remaining functions of the step.
The fan stays on throughout the steps of the nested SFC.

For additional information on how to nest an SFC, see “Nest an SFC”
on page 5-49.

EXAMPLE Use a Large Step

This action turns on a fan:

• fan.ProgProgReq lets the SFC command the state
of the fan.

• fan.ProgCommand turns on the fan.

This action calls another SFC. The SFC sequences the
remaining functions of the step.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-45
End the SFC Once an SFC completes its last step, it does not automatically restart at
the first step. You must tell the SFC what to do when it finishes the last
step.

At the End of the SFC, What Do You Want to Do?

Use a Stop Element

The stop element lets you stop the execution of an entire SFC or a
path of a simultaneous branch and wait to restart. When an SFC
reaches a stop element, the following occurs:

• The X bit of the stop element turns on. This signals that the SFC
is at the stop element.

• Stored actions remain active.

• Execution stops for part or all of the SFC:

To: Do this:

automatically loop back to an
earlier step

Wire the last transition to the top of the step to which
you want to go.

See “Wire to a Previous Step“on page 5-17.

stop and wait for a command to
restart

Use a Stop Element.

See “Use a Stop Element” on page 5-45.

If the stop element is at the end of a: Then:

sequence entire SFC stops

selection branch

path within a simultaneous branch only that path stops while the rest of the
SFC continues to execute.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-46 Design a Sequential Function Chart
Restart (Reset) the SFC

Once at the stop element, you have several options to restart the SFC:

EXAMPLE Use a Stop Element

When the SFC reaches last_step and
process_done is true, the execution of
the SFC stops.

If the SFC is: And the Last Scan of Active
Steps option is:

Then:

nested (i.e., another SFC calls this
SFC as a subroutine)

Automatic reset At the end of the step that calls the nested SFC, the nested
SFC automatically resets:

• The nested SFC resets to the initial step.

• The X bit of the stop element in the nested SFC clears
to zero.

Programmatic reset 1. Use an SFC Reset (SFR) instruction to restart the SFC
at the required step.

2. Use logic to clear the X bit of the stop element.

Don’t scan

NOT nested (i.e., no SFC calls this
SFC as a subroutine)

1. Use an SFC Reset (SFR) instruction to restart the SFC
at the required step.

2. Use logic to clear the X bit of the stop element.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-47
The following example shows the use of the SFC Reset (SFR)
instruction to restart the SFC and clear the X bit of the stop element.

SFC_STOP Structure

Each stop uses a tag to provide the following information about the
stop element:

EXAMPLE Restart (Reset) the SFC

If SFC_a_stop.X = on (SFC_a is at the stop) and SFC_a_reset = on (time to reset the SFC)
then for one scan (ons[0] = on):

Reset SFC_a to SFC_a_Step_1

SFC_a_stop.X = 0

If you want to: Then check or set
this member:

Data type: Details:

determine when the SFC is at
the stop

X BOOL • When the SFC reaches the stop, the X bit turns on.

• The X bit clears if you configure the SFCs to restart at the
initial step and the controller changes from program to run
mode.

• In a nested SFC, the X bit also clears if you configure the
SFCs for automatic reset and the SFC leaves the step that
calls the nested SFC.

determine the target of an SFC
Reset (SFR) instruction

Reset BOOL An SFC Reset (SFR) instruction resets the SFC to a step or stop
that the instruction specifies.

• The Reset bit indicates to which step or stop the SFC will
go to begin executing again.

• Once the SFC executes, the Reset bit clears.

determine how many times a
stop has become active

Count DINT This is not a count of scans of the stop.

• The count increments each time the stop becomes active.

• It increments again only after the stop goes inactive and
then active again.

• The count resets only if you configure the SFC to restart at
the initial step. With that configuration, it resets when the
controller changes from program mode to run mode.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-48 Design a Sequential Function Chart
use one tag for the various
status bits of this stop

Status DINT For this member: Use this bit:

Reset 22

X 31

If you want to: Then check or set
this member:

Data type: Details:
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-49
Nest an SFC One method for organizing your project is to create one SFC that
provides a high-level view of your process. Each step of that SFC calls
another SFC that performs the detailed procedures of the step (nested
SFC).

The following figure shows one way to nest an SFC. In this method,
the last scan option of the SFC is configured for either Programmatic
reset or Don’t scan. If you configure the SFC for Automatic reset, then
step 1 is unnecessary.

1. Reset the nested SFC:

• The SFR instruction restarts the SFC_b at SFC_b_Step_1. Each
time the SFC_a leaves this step and then returns, you have to
reset the SFC_b.

• The action also clears the X bit of the stop element.

2. Call the SFC_b.

3. Stop the SFC_b. This sets the X bit of the stop element.

4. Use the X bit of the stop element to signal that the SFC_b is
done and it is time to go to the next step.

1

2

4

3

SFC_b

SFC_a
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-50 Design a Sequential Function Chart
Pass Parameters

To pass parameters to or from an SFC, place a Subroutine/Return
element in the SFC.

Configure When to Return
to the OS/JSR

By default, an SFC executes a step or group of simultaneous steps and
then returns to the operating system (OS) or the calling routine (JSR).

You have the option of letting the SFC execute until it reaches a false
transition. If several transitions are true at the same time, this option
reduces the time to get to the desired step.

Use the Execute until FALSE transition option only when:

1. You don’t have to update JSR parameters before each step.
Parameters update only when the SFC returns to the JSR. See
“Pass Parameters” on page 5-50.

2. A false transition occurs within the watchdog timer for the task.
If the time that it takes to return to a JSR and complete the rest
of the task is greater than the watchdog timer, a major fault
occurs.

Input Parameters Return Parameters

❇ ❇
SFC_b

default
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-51
For a detailed diagram of the execution of each option, see Figure 5.9
on page 5-55.

Pause or Reset an SFC Two optional instructions are available that give you further control
over the execution of your SFC:

Both instructions are available in the ladder logic and structured text
programming languages.

For more information, use either of the following resources:

• In RSLogix 5000 software, from the Help menu, choose
Instruction Help. Look in the Program Control Instructions
category.

• See Logix5000 Controllers General Instructions Reference
Manual, publication 1756-RM003.

Execution Diagrams The following diagrams show the execution of an SFC with different
organizations of steps or different selections of execution options. Use
the diagrams if you require a more detailed understanding of how
your SFC executes.

If you want to: Then use this instruction:

pause an SFC Pause SFC (SFP)

reset an SFC to a specific step or stop Reset SFC (SFR)

For a diagram of the: See page:

Execution of a Sequence 5-52

Execution of a Simultaneous Branch 5-53

Execution of a Selection Branch 5-54

When parameters enter and exit an SFC 5-54

Options for Execution Control 5-55
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-52 Design a Sequential Function Chart
Figure 5.5 Execution of a Sequence

step_2 last scan

false return to

return to

true

step_1

return to

true

false return to

step_1

tran_2

step_2

tran_1

This… …executes like this

tran_1

tran_2

last scanstep_1

step_2
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-53
Figure 5.6 Execution of a Simultaneous Branch

step_1

false return to

false return to

return to

true

step_1

true

false

step_3

return to

step_1

tran_2

step_2 step_3

step_2

step_2

return to

true

step_3

step_2

step_3

This… …executes like this

tran_1

tran_1

tran_2

tran_2

last scan

last scan
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-54 Design a Sequential Function Chart
Figure 5.7 Execution of a Selection Branch

Figure 5.8 When parameters enter and exit an SFC

last scan

last scan

false return to

false

return to

true

step_1

step_1

return to

true

false return to

step_2

tran_2

step_2

return to

true

step_1

step_3

return to

true

step_3

false

step_1

step_2 step_3

tran_4

tran_1

tran_3
return to

This… …executes like this

tran_2

tran_3 tran_4

tran_1

last scan

return to

true

false

step_1

return to

step_1

input parameters

return parameters

return parameters

input parameters

input parameters

input parameters

tran_1
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Design a Sequential Function Chart 5-55
Figure 5.9 Options for Execution Control

last scan

last scan

false return to

return to

true

step_1

step_1

return to

true

false

step_2

return to

step_2

false return to

true

step_1

step_1

true

false

step_2

return to

step_2

Execute current active steps only Execute until FALSE transition

step_1

tran_2

step_2

tran_1

This…

…executes like this

tran_2

false return to
tran_1

tran_2

tran_1
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

5-56 Design a Sequential Function Chart
Notes:
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Chapter 6

Program a Sequential Function Chart

When to Use This
Procedure

Use this procedure to enter a sequential function chart (SFC) into
RSLogix 5000 software. Enter the SFC as you design it. Or first design
the SFC and then enter it. To design the SFC, see “Design a Sequential
Function Chart” on page 5-1.

Before You Use This
Procedure

Before you use this procedure, make sure you are able to perform the
following tasks:

For more information on any of those tasks, see “Getting Started” on
page 1-1.

Navigate the Controller Organizer

Identify the Programming Languages That Are Installed

✓

✓

1 Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-2 Program a Sequential Function Chart
How to Use This Procedure To program an SFC:

Add an SFC Element

Create a Simultaneous Branch

Create a Selection Branch

Set the Priorities of a Selection Branch

Return to a Previous Step

Rename a Step

Configure a Step

Rename a Transition

Program a Transition

Add an Action

Rename an Action

Configure an Action

Program an Action

Assign the Execution Order of Actions

Document the SFC

Show or Hide Text Boxes or Tag Descriptions

Configure the Execution of the SFC

Verify the Routine
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-3
Add an SFC Element To add SFC elements, use the SFC toolbar.

To add an element to your SFC, you have these options:

Add and Manually Connect Elements

1. On the SFC toolbar, click the button for the item that you want
to add.

2. Drag the element to the required location on the SFC.

3. To wire (connect) two elements together, click a pin on one of

the elements and then click the pin on the other

element . A green dot shows a valid connection point.

step

transition

start of simultaneous
branch

step and transition

start of selection
branch

subroutine/return

text box

stop

new path

Add and Manually Connect Elements

Add and Automatically Connect Elements

Drag and Drop Elements

green dot

A

B

For example:

A

B

Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-4 Program a Sequential Function Chart
Add and Automatically Connect Elements

1. Select (click) the element to which you want to connect a new
element.

2. With the element still selected, click the toolbar button for the
next element.

Drag and Drop Elements

From the SFC toolbar, drag the button for the required element to the
desired connection point on the SFC. A green dot shows a valid
connection point.

green dot
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-5
Create a Simultaneous
Branch

Start a Simultaneous Branch

1. On the SFC toolbar, click the button. Then drag the new
branch to the desired location.

2. To add a path to the branch, select (click) the first step of the
path that is to the left of where you want to add the new path.

Then click the button.

3. To wire the simultaneous branch to the preceding transition,

click the bottom pin of the transition and then click the

horizontal line of the branch . A green dot shows a valid
connection point.

End a Simultaneous Branch

1. Select the last step of each path in the branch. To select the
steps, you can either:

• Click and drag the pointer around the steps that you want to
select.

• Click the first step. Then press and hold [Shift] and click the
rest of the steps that you want to select.

2. On the SFC toolbar, click the button.

A

B

green dot

A

B

Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-6 Program a Sequential Function Chart
3. Add the transition that follows the simultaneous branch.

4. To wire the simultaneous branch to the transition, click the top

pin of the transition and then click the horizontal line of the

branch . A green dot shows a valid connection point.

Create a Selection Branch Start a Selection Branch

1. On the SFC toolbar, click the button. Then drag the new
branch to the desired location.

2. To add a path to the branch, select (click) the first transition of
the path that is to the left of where you want to add the new

path. Then click the button.

3. To wire the selection branch to the preceding step, click the

bottom pin of the step and then click the horizontal line of

the branch . A green dot shows a valid connection point.

A

B

green dot

A

B

A

B

green dot

A

B

Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-7
End a Selection Branch

1. Select the last transition of each path in the branch. To select the
transitions, you can either:

• Click and drag the pointer around the transitions that you
want to select.

• Click the first transition. Then press and hold [Shift] and click
the rest of the transitions that you want to select.

2. On the SFC toolbar, click the button.

3. Add the step that follows the selection branch.

4. To wire the selection branch to the step, click the top pin of the

step and then click the horizontal line of the branch . A
green dot shows a valid connection point.

A

B

green dot

A B
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-8 Program a Sequential Function Chart
Set the Priorities of a
Selection Branch

By default, the SFC checks the transitions that start a selection branch
from left to right. If you want to check a different transition first,
assign a priority to each path of the selection branch. For example, it
is a good practice to check for error conditions first. Then check for
normal conditions.

To assign priorities to a selection branch:

1. Right click the horizontal line that starts the branch and choose
Set Sequence Priorities.

2. Clear (uncheck) the Use default priorities check box.

3. Select a transition.

4. Use the Move buttons to raise or lower the priority of the
transition.

5. When all the transitions have the desired priority,

choose

When you clear (uncheck) the Use default priorities check box,
numbers show the priority of each transition.

3.

2.

4.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-9
Return to a Previous Step To jump to a different step in your SFC:

• Connect a Wire to the Step

• Hide a Wire

• Show a Hidden Wire

Connect a Wire to the Step

1. Click the lower pin of the transition that signals the jump. Then
click the top pin of the step to which you want to go. A green
dot shows a valid connection point.

Typically, the resulting connection orients itself along the center
of the flowchart and is hard to see.

2. To make the jump easier to read, drag its horizontal bar above
the step to which the jump goes. You may also have to
reposition some of the SFC elements.

For example, to go to Step_001 from Tran_003:

Drag the horizontal bar here.

Click here.

green dot

Then click here.

1. 2.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-10 Program a Sequential Function Chart
Hide a Wire

If a wire gets in the way of other parts of your SFC, hide the wire to
make the SFC easier to read.

To hide a wire, right-click the wire and choose Hide Wire.

To see the SFC element to which the wire goes, click the grid location
on the wire.

Show a Hidden Wire

To show a wire that is hidden, right-click a visible part of the wire and
choose Show Wire.

location to which the wire goes

hidden wire
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-11
Rename a Step Each step uses a tag to store configuration and status information
about the step. To rename the tag of the step:

1. Click the button of the step.

2. Click the Tag tab.

3. Type the new name for the step (tag).

4. Choose

Configure a Step To configure a step, you have these options:

• Assign the Preset Time for a Step

• Configure Alarms for a Step

• Use an Expression to Calculate a Time

Assign the Preset Time for a Step

1. Click the button of the step.

2. Type the time for the step, in milliseconds.

3. Choose

When the step is active for the preset time (Timer = Preset), the
DN bit of the step turns on.

To calculate the preset time for a step at runtime, see “Use an
Expression to Calculate a Time” on page 6-12.

3.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-12 Program a Sequential Function Chart
Configure Alarms for a Step

To turn on an alarm if a step executes too long or not long enough:

1. Click the button of the step.

2. Check the AlarmEnable check box.

3. Type the time for the high alarm, in milliseconds.

4. Type the time for the low alarm, in milliseconds.

5. Choose

To calculate the time for an alarm at runtime, see “Use an Expression
to Calculate a Time” on page 6-12.

Use an Expression to Calculate a Time

To calculate a time based on tags in your project, enter the time as a
numeric expression. You can use an expression to calculate the
following times:

• Preset

• LimitHigh

• LimitLow

To enter a time as an expression:

1. Click the button of the step.

2. Select (check) the Use Expression check box.

2.

3.

4.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-13
3. Click the Define button.

4. Type a numeric expression that defines the time.

• Use the buttons alongside the dialog box to help you
complete the expression.

• For information on numeric expressions, see “Expressions” on
page 7-4.

5. Choose

6. To close the Step Properties dialog box, choose

2.

3.

browse for a tag

choose a function

choose an operator

create a tag

4.

5.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-14 Program a Sequential Function Chart
Rename a Transition Each transition uses a tag to store the status of the transition. To
rename the tag of the transition:

1. Click the button of the transition.

2. Click the Tag tab.

3. Type the new name for the transition (tag).

4. Choose

Program a Transition To program a transition, you have these options:

• Enter a BOOL Expression

• Call a Subroutine

Enter a BOOL Expression

The simplest way to program the transition is to enter the conditions
as a BOOL expression in structured text. For information on BOOL
expressions, see “Expressions” on page 7-4.

1. Double-click the text area of the transition.

2. Type the BOOL expression that determines when the transition
is true or false.

3. To close the text entry window, press [Ctrl] + [Enter].

3.

BOOL_expression
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-15
The following example shows three transitions that use a
BOOL expression.

Call a Subroutine

1. Right-click the transition and choose Set JSR.

2. Choose the routine that contains the logic for the transition.

3. Choose

EXAMPLE Enter a BOOL Expression

tag name of the
transition

BOOL expression that controls when the
transition is true or false

2.

JSR(routine_name)
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-16 Program a Sequential Function Chart
Add an Action To add an action to a step:

Right-click the step in which the action executes and choose Add
Action.

Rename an Action To change the name of an action to something that is specific to your
application:

1. Click the button of the action.

2. Click the Tag tab.

3. Type the new name for the action (tag).

4. Choose

3.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-17
Configure an Action To configure an action, you have these options:

• Change the Qualifier of an Action

• Calculate a Preset Time at Runtime

• Mark an Action as a Boolean Action

Change the Qualifier of an Action

A qualifier determines when an action starts and stops. The default
qualifier is N Non-Stored. The action starts when the step is activated
and stops when the step is deactivated. For more information, see
“Choose a Qualifier for an Action” on page 5-23.

1. Click the button of the action.

2. Assign the qualifier for the action.

3. If you chose a timed qualifier, type the time limit or delay for the
action, in milliseconds. Timed qualifiers include:

• L Time Limited

• SL Stored and Time Limited

• D Time Delayed

• DS Delayed and Stored

• SD Stored and Time Delayed

4. Choose

2.

3.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-18 Program a Sequential Function Chart
Calculate a Preset Time at Runtime

To calculate a preset value based on tags in your project, enter the
value as a numeric expression.

1. Click the button of the action.

2. Select (check) the Use Expression check box.

3. Click the Define button.

4. Type a numeric expression that defines the preset time.

• Use the buttons alongside the dialog box to help you
complete the expression.

• For information on numeric expressions, see “Expressions” on
page 7-4.

5. Choose

6. To close the Action Properties dialog box, choose

2.

3.

browse for a tag

choose a function

choose an operator

create a tag

4.

5.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-19
Mark an Action as a Boolean Action

Use a boolean action to only set a bit when the action executes. For
more information, see “Use a Boolean Action” on page 5-20.

1. Click the button of the action.

2. Click the Boolean check box.

3. Choose

Program an Action To program an action, you have these options:

• Enter Structured Text

• Call a Subroutine

Enter Structured Text

The easiest way to program an action is to write the logic as structured
text within the body of the action. When the action turns on, the
controller executes the structured text.

1. Double-click the text area of the action.

2. Type the required structured text.

3. To close the text entry window, press [Ctrl] + [Enter].

2.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-20 Program a Sequential Function Chart
For information on structured text:

//comment

statement;

For this structured text information: See:

general information about assignments, operators,
functions, instructions, or comments

“Program Structured Text” on page 7-1

information about a specific instruction • Logix5000 Controllers General Instructions Reference
Manual, publication 1756-RM003

• Logix5000 Controllers Process and Drives Instructions
Reference Manual, publication 1756-RM006

• Logix5000 Controllers Motion Instruction Set Reference
Manual, publication 1756-RM007
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-21
Call a Subroutine

Use a Jump to Subroutine (JSR) instruction to execute a subroutine
when the action is active.

1. In the SFC, right-click the text entry area of the action and
choose Set JSR.

2. Choose the routine that you want to call.

3. To pass a parameter to the routine, click the empty Input
Parameters text box. Then use the down arrow to choose the
tag that contains the parameter.

4. To receive a parameter from the routine, click the empty Return
Parameters text box. Then use the down arrow to choose the
tag in which to store the parameter from the routine.

5. Choose

2.

3. 4.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-22 Program a Sequential Function Chart
Assign the Execution Order
of Actions

Actions execute in the order in which they appear.

For example:

To change the order in which an action executes, drag the action to
the desired location in the sequence. A green bar shows a valid
placement location.

For example:

When Step_003 is active, its actions
execute in this order:

1. Action_000

2. Action_001

3. Action_002
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-23
Document the SFC To document an SFC, you have the following options:

Add Structured Text Comments

Use the following table to format your comments:

To document this: And you want to: Do this:

general information about the SFC Add a Text Box

step Add a Text Box

-or-

Add a Tag Description

transition download the documentation to the controller Add Structured Text Comments

have the option of showing or hiding the
documentation

Add a Text Box

-or-

Add a Tag Description

position the documentation anywhere in the
SFC

action download the documentation to the controller Add Structured Text Comments

stop Add a Text Box

-or-

Add a Tag Description

other element (e.g., selection branch)

To add a comment: Use one of these formats:

on a single line //comment

(*comment*)

/*comment*/

at the end of a line of structured
text

within a line of structured text (*comment*)

/*comment*/

that spans more than one line (*start of comment . . . end of
comment*)

/*start of comment . . . end of
comment*/
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-24 Program a Sequential Function Chart
For more information, see “Comments” on page 7-28.

To enter the comments:

1. Double-click the text area of the action.

2. Type the comments.

3. To close the text entry window, press [Ctrl] + [Enter].

Add a Tag Description

1. Click the button of the element.

2. Click the Tag tab.

3. Type the description for the element (tag).

4. Choose

5. Drag the description box to the desired location on the SFC.

//comment

statement;

3.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-25
Add a Text Box

A text box lets you add notes that clarify the function of an SFC
element (step, transition, stop, etc.). Or use a text box to capture
information that you will use later on. For example:

1. Click

A text box appears.

2. Drag the text box to a location near the element to which it
applies.

3. Double-click the text box and type the note. Then press
[Ctrl] + [Enter].

4. As you move the element on the SFC, what do you want the text
box to do?

5. Click the pin symbol in the text box and then click the SFC
element to which you want to attach the text box. A green dot
shows a valid connection point.

If you the text box to: Then:

stay in the same spot Stop. You are done.

move with the element to which it
applies

Go to step 5.

A

B

green dot
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-26 Program a Sequential Function Chart
Show or Hide Text Boxes or
Tag Descriptions

You have the option of showing or hiding both text boxes and tag
descriptions. If you choose to show descriptions, the SFC window
only shows the descriptions for steps, transitions, and stops (not
actions).

To show or hide text boxes or descriptions, you have these options:

• Show or Hide Text Boxes or Descriptions

• Hide an Individual Tag Description

Show or Hide Text Boxes or Descriptions

1. From the Tools menu, choose Options.

2. Under SFC Editor, choose the Display category.

3. Choose the desired option.

4. Choose

2.

If you want to: Then:

show text boxes or descriptions check the corresponding check box

hide text boxes or descriptions clear (uncheck) the corresponding check box
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-27
Hide an Individual Tag Description

To hide the description of a specific element while showing other
descriptions:

1. Click the button of the element whose description you want
to hide.

2. Check the Never display description in routine check box.

3. Choose

To show other descriptions, see “Show or Hide Text Boxes or
Descriptions” on page 6-26.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-28 Program a Sequential Function Chart
Configure the Execution of
the SFC

The SFC Execution tab of the controller properties lets you configure
the following:

• what to do when a transition is true

• where to start after a transition to the run mode or recovery from
a power loss

• what to do on the last scan of a step

1. On the Online toolbar, click controller properties button.

2. Click the SFC Execution tab.

3. Choose whether or not to return to the OS/JSR if a transition is
true.

4. Choose where to restart the SFC after a transition to run mode or
recovery from a power loss.

5. Choose what to do on the last scan of a step.

6. Choose

1.

2.

3.

4.

5.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program a Sequential Function Chart 6-29
Verify the Routine As you program your routine, periodically verify your work:

1. In the top-most toolbar of the RSLogix 5000 window, click

2. If any errors are listed at the bottom of the window:

a. To go to the first error or warning, press [F4].

b. Correct the error according to the description in the Results
window.

c. Go to step 1.

3. To close the Results window, press [Alt] + [1].
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

6-30 Program a Sequential Function Chart
Notes:
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Chapter 7

Program Structured Text

When to Use This Chapter Use this chapter to write and enter structured text for a:

• structured text routine

• action of a sequential function chart (SFC)

• transition of sequential function chart (SFC)

Structured Text Syntax Structured text is a textual programming language that uses statements
to define what to execute.

• Structured text is not case sensitive.

• Use tabs and carriage returns (separate lines) to make your
structured text easier to read. They have no effect on the
execution of the structured text.

Structured text can contain these components:

Term: Definition: Examples:

assignment
(see page 7-2)

Use an assignment statement to assign values to tags.
The := operator is the assignment operator.
Terminate the assignment with a semi colon “;”.

tag := expression;

expression
(see page 7-4)

An expression is part of a complete assignment or construct statement.
An expression evaluates to a number (numerical expression) or to a true
or false state (BOOL expression).

An expression contains:

tags A named area of the memory where data is stored
(BOOL, SINT,INT,DINT, REAL, string).

value1

immediates A constant value. 4

operators A symbol or mnemonic that specifies an operation
within an expression.

tag1 + tag2
tag1 >= value1

functions When executed, a function yields one value. Use
parentheses to contain the operand of a function.
Even though their syntax is similar, functions differ
from instructions in that functions can only be used
in expressions. Instructions cannot be used in
expressions.

function(tag1)
1 Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-2 Program Structured Text
Assignments Use an assignment to change the value stored within a tag. An
assignment has this syntax:

tag := expression ;

where:

instruction
(see page 7-11)

An instruction is a standalone statement.
An instruction uses parenthesis to contain its operands.
Depending on the instruction, there can be zero, one, or multiple
operands.
When executed, an instruction yields one or more values that are part of
a data structure.
Terminate the instruction with a semi colon “;”.

Even though their syntax is similar, instructions differ from functions in
that instructions cannot be used in expressions. Functions can only be
used in expressions.

instruction();

instruction(operand);

instruction(operand1,
operand2,operand3);

construct
(see page 7-12)

A conditional statement used to trigger structured text code (i.e, other
statements).
Terminate the construct with a semi colon “;”.

IF...THEN
CASE
FOR...DO
WHILE...DO
REPEAT...UNTIL
EXIT

comment
(see page 7-28)

Text that explains or clarifies what a section of structured text does.
• Use comments to make it easier to interpret the structured text.
• Comments do not affect the execution of the structured text.
• Comments can appear anywhere in structured text.

//comment

(*start of comment . . .
end of comment*)

/*start of comment . . .
end of comment*/

Term: Definition: Examples:

Component: Description:

tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL

:= is the assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT
INT
DINT
REAL

numeric expression

; ends the assignment
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-3
The tag retains the assigned value until another assignment changes
the value.

The expression can be simple, such as an immediate value or another
tag name, or the expression can be complex and include several
operators and/or functions. See the next section “Expressions“on page
7-4 for details.

Specify a non-retentive assignment

The non-retentive assignment is different from the regular assignment
described above in that the tag in a non-retentive assignment is reset
to zero each time the controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

A non-retentive assignment has this syntax:

tag [:=] expression ;

where:

Component: Description:

tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL

[:=] is the non-retentive assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT
INT
DINT
REAL

numeric expression

; ends the assignment
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-4 Program Structured Text
Assign an ASCII character to a string

Use the assignment operator to assign an ASCII character to an
element of the DATA member of a string tag. To assign a character,
specify the value of the character or specify the tag name, DATA
member, and element of the character. For example:

To add or insert a string of characters to a string tag, use either of
these ASCII string instructions:

Expressions An expression is a tag name, equation, or comparison. To write an
expression, use any of the following:

• tag name that stores the value (variable)

• number that you enter directly into the expression
(immediate value)

• functions, such as: ABS, TRUNC

• operators, such as: +, -, <, >, And, Or

As you write expressions, follow these general rules:

• Use any combination of upper-case and lower-case letter. For
example, these three variations of "AND" are acceptable: AND,
And, and.

• For more complex requirements, use parentheses to group
expressions within expressions. This makes the whole
expression easier to read and ensures that the expression
executes in the desired sequence. See “Determine the order of
execution“on page 7-10.

This is OK: This is not OK.

string1.DATA[0]:= 65; string1.DATA[0] := A;

string1.DATA[0]:= string2.DATA[0]; string1 := string2;

To: Use this instruction:

add characters to the end of a string CONCAT

insert characters into a string INSERT
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-5
In structured text, you use two types of expressions:

BOOL expression: An expression that produces either the BOOL
value of 1 (true) or 0 (false).

• A bool expression uses bool tags, relational operators, and
logical operators to compare values or check if conditions are
true or false. For example, tag1>65.

• A simple bool expression can be a single BOOL tag.

• Typically, you use bool expressions to condition the execution
of other logic.

Numeric expression: An expression that calculates an integer or
floating-point value.

• A numeric expression uses arithmetic operators, arithmetic
functions, and bitwise operators. For example, tag1+5.

• Often, you nest a numeric expression within a bool expression.
For example, (tag1+5)>65.

Use the following table to choose operators for your expressions:

If you want to: Then:

Calculate an arithmetic value “Use arithmetic operators and functions“on page 7-6.

Compare two values or strings “Use relational operators“on page 7-7.

Check if conditions are true or false “Use logical operators“on page 7-9.

Compare the bits within values “Use bitwise operators“on page 7-10.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-6 Program Structured Text
Use arithmetic operators and functions

You can combine multiple operators and functions in arithmetic
expressions.

Arithmetic operators calculate new values.

Arithmetic functions perform math operations. Specify a constant, a
non-boolean tag, or an expression for the function.

To: Use this operator: Optimal data type:

add + DINT, REAL

subtract/negate - DINT, REAL

multiply * DINT, REAL

exponent (x to the power of y) ** DINT, REAL

divide / DINT, REAL

modulo-divide MOD DINT, REAL

For: Use this function: Optimal data type:

absolute value ABS (numeric_expression) DINT, REAL

arc cosine ACOS (numeric_expression) REAL

arc sine ASIN (numeric_expression) REAL

arc tangent ATAN (numeric_expression) REAL

cosine COS (numeric_expression) REAL

radians to degrees DEG (numeric_expression) DINT, REAL

natural log LN (numeric_expression) REAL

log base 10 LOG (numeric_expression) REAL

degrees to radians RAD (numeric_expression) DINT, REAL

sine SIN (numeric_expression) REAL

square root SQRT (numeric_expression) DINT, REAL

tangent TAN (numeric_expression) REAL

truncate TRUNC (numeric_expression) DINT, REAL
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-7
For example:

Use relational operators

Relational operators compare two values or strings to provide a true
or false result. The result of a relational operation is a BOOL value:

Use the following relational operators:

Use this format: Example:

For this situation: You’d write:

value1 operator value2 If gain_4 and gain_4_adj are DINT tags and your
specification says: "Add 15 to gain_4 and store the
result in gain_4_adj."

gain_4_adj :=
gain_4+15;

operator value1 If alarm and high_alarm are DINT tags and your
specification says: “Negate high_alarm and store
the result in alarm.”

alarm:=
-high_alarm;

function(numeric_expression) If overtravel and overtravel_POS are DINT tags and
your specification says: “Calculate the absolute
value of overtravel and store the result in
overtravel_POS.”

overtravel_POS :=
ABS(overtravel);

value1 operator
(function((value2+value3)/2)

If adjustment and position are DINT tags and
sensor1 and sensor2 are REAL tags and your
specification says: “Find the absolute value of the
average of sensor1 and sensor2, add the
adjustment, and store the result in position.”

position :=
adjustment +
ABS((sensor1 +
sensor2)/2);

If the comparison is: The result is:

true 1

false 0

For this comparison: Use this operator: Optimal Data Type:

equal = DINT, REAL, string

less than < DINT, REAL, string

less than or equal <= DINT, REAL, string

greater than > DINT, REAL, string

greater than or equal >= DINT, REAL, string

not equal <> DINT, REAL, string
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-8 Program Structured Text
For example:

How Strings Are Evaluated

The hexadecimal values of the ASCII characters determine if one
string is less than or greater than another string.

• When the two strings are sorted as in a telephone directory, the
order of the strings determines which one is greater.

• Strings are equal if their characters match.

• Characters are case sensitive. Upper case “A” ($41) is not equal
to lower case “a” ($61).

For the decimal value and hex code of a character, see the back cover
of this manual.

Use this format: Example:

For this situation: You’d write:

value1 operator value2 If temp is a DINT tag and your specification
says: “If temp is less than 100° then…”

IF temp<100 THEN...

stringtag1 operator
stringtag2

If bar_code and dest are string tags and your
specification says: “If bar_code equals dest
then…”

IF bar_code=dest THEN...

char1 operator char2

To enter an ASCII character directly into
the expression, enter the decimal value of
the character.

If bar_code is a string tag and your
specification says: “If bar_code.DATA[0] equals
’A’ then…”

IF bar_code.DATA[0]=65
THEN...

bool_tag :=
bool_expressions

If count and length are DINT tags, done is a
BOOL tag, and your specification says ”If count
is greater than or equal to length, you are done
counting.”

done := (count >= length);

ASCII Characters Hex Codes

1ab $31$61$62

1b $31$62

A $41

AB $41$42

B $42

a $61

ab $61$62

g
r
e
a
t
e
r

l
e
s
s
e
r

AB < B

a > B
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-9
Use logical operators

Logical operators let you check if multiple conditions are true or false.
The result of a logical operation is a BOOL value:

Use the following logical operators:

For example:

If the comparison is: The result is:

true 1

false 0

For: Use this operator: Data Type:

logical AND &, AND BOOL

logical OR OR BOOL

logical exclusive OR XOR BOOL

logical complement NOT BOOL

Use this format: Example:

For this situation: You’d write:

BOOLtag If photoeye is a BOOL tag and your specification
says: “If photoeye_1 is on then…”

IF photoeye THEN...

NOT BOOLtag If photoeye is a BOOL tag and your specification
says: “If photoeye is off then…”

IF NOT photoeye THEN...

expression1 & expression2 If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
and temp is less than 100° then…”.

IF photoeye & (temp<100)
THEN...

expression1 OR expression2 If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on
or temp is less than 100° then…”.

IF photoeye OR (temp<100)
THEN...

expression1 XOR expression2 If photoeye1 and photoeye2 are BOOL tags and
your specification says: “If:

• photoeye1 is on while photoeye2 is off
or

• photoeye1 is off while photoeye2 is on
then…"

IF photoeye1 XOR
photoeye2 THEN...

BOOLtag := expression1 &
expression2

If photoeye1 and photoeye2 are BOOL tags,
open is a BOOL tag, and your specification says:
“If photoeye1 and photoeye2 are both on, set
open to true”.

open := photoeye1 &
photoeye2;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-10 Program Structured Text
Use bitwise operators

Bitwise operators manipulate the bits within a value based on
two values.

For example:

Determine the order of execution

The operations you write into an expression are performed in a
prescribed order, not necessarily from left to right.

• Operations of equal order are performed from left to right.

• If an expression contains multiple operators or functions, group
the conditions in parenthesis "()" . This ensures the correct
order of execution and makes it easier to read the expression.

For: Use this operator: Optimal Data Type:

bitwise AND &, AND DINT

bitwise OR OR DINT

bitwise exclusive OR XOR DINT

bitwise complement NOT DINT

Use this format: Example:

For this situation: You’d write:

value1 operator value2 If input1, input2, and result1 are DINT tags and your
specification says: “Calculate the bitwise result of
input1 and input2. Store the result in result1.”

result1 := input1 AND
input2;

Order: Operation:

1. ()

2. function (…)

3. **

4. − (negate)

5. NOT

6. *, /, MOD

7. +, - (subtract)

8. <, <=, >, >=

9. =, <>

10. &, AND

11. XOR

12. OR
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-11
Instructions Structured text statements can also be instructions. See the Locator
Table at the beginning of this manual for a list of the instructions
available in structured text. A structured text instruction executes each
time it is scanned. A structured text instruction within a construct
executes every time the conditions of the construct are true. If the
conditions of the construct are false, the statements within the
construct are not scanned. There is no rung-condition or state
transition that triggers execution.

This differs from function block instructions that use EnableIn to
trigger execution. Structured text instructions execute as if EnableIn is
always set.

This also differs from relay ladder instructions that use
rung-condition-in to trigger execution. Some relay ladder instructions
only execute when rung-condition-in toggles from false to true. These
are transitional relay ladder instructions. In structured text, instructions
will execute each time they are scanned unless you pre-condition the
execution of the structured text instruction.

For example, the ABL instruction is a transitional instruction in relay
ladder. In this example, the ABL instruction only executes on a scan
when tag_xic transitions from cleared to set. The ABL instruction does
not execute when tag_xic stays set or when tag_xic is cleared.

In structured text, if you write this example as:

IF tag_xic THEN ABL(0,serial_control);

END_IF;

the ABL instruction will execute every scan that tag_xic is set, not just
when tag_xic transitions from cleared to set.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-12 Program Structured Text
If you want the ABL instruction to execute only when tag_xic
transitions from cleared to set, you have to condition the structured
text instruction. Use a one shot to trigger execution.

Constructs Constructs can be programmed singly or nested within other
constructs.

osri_1.InputBit := tag_xic;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

ABL(0,serial_control);

END_IF;

If you want to: Use this construct: Available in these languages: See page:

do something if or when specific
conditions occur

IF...THEN structured text 7-13

select what to do based on a numerical value CASE...OF structured text 7-16

do something a specific number of times before
doing anything else

FOR...DO structured text 7-19

keep doing something as long as certain
conditions are true

WHILE...DO structured text 7-22

keep doing something until a condition is true REPEAT...UNTIL structured text 7-25
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-13
IF...THEN Use IF…THEN to do something if or when specific conditions occur.

Operands:

Structured Text

Description: The syntax is:

To use ELSIF or ELSE, follow these guidelines:

1. To select from several possible groups of statements, add one or
more ELSIF statements.

• Each ELSIF represents an alternative path.

• Specify as many ELSIF paths as you need.

• The controller executes the first true IF or ELSIF and skips the
rest of the ELSIFs and the ELSE.

2. To do something when all of the IF or ELSIF conditions are false,
add an ELSE statement.

Operand: Type: Format: Enter:

bool_
expression

BOOL tag
expression

BOOL tag or expression that evaluates to
a BOOL value (BOOL expression)

IF bool_expression THEN

<statement>;

END_IF;

IF bool_expression1 THEN

<statement >; statements to execute when
bool_expression1 is true

.

.

.

optional
ELSIF bool_expression2 THEN

<statement>; statements to execute when
bool_expression2 is true

.

.

.

optional
ELSE

<statement>; statements to execute when
both expressions are false

.

.

.

END_IF;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-14 Program Structured Text
The following table summarizes different combinations of IF, THEN,
ELSIF, and ELSE.

Arithmetic Status Flags: not affected

Fault Conditions: none

Example 1: IF…THEN

Example 2: IF…THEN…ELSE

The [:=] tells the controller to clear light whenever the controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

If you want to: And: Then use this construct

do something if or when conditions
are true

do nothing if conditions are false IF…THEN

do something else if conditions are false IF…THEN…ESLE

choose from alternative statements
(or groups of statements) based on
input conditions

do nothing if conditions are false IF…THEN…ELSIF

assign default statements if all
conditions are false

IF…THEN…ELSIF…ELSE

If you want this: Enter this structured text:

IF rejects > 3 then IF rejects > 3 THEN

conveyor = off (0) conveyor := 0;

alarm = on (1) alarm := 1;

END_IF;

If you want this: Enter this structured text:

If conveyor direction contact = forward (1) then IF conveyor_direction THEN

light = off light := 0;

Otherwise light = on ELSE

light [:=] 1;

END_IF;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-15
Example 3: IF…THEN…ELSIF

The [:=] tells the controller to clear Sugar.Inlet whenever the
controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

Example 4: IF…THEN…ELSIF…ELSE

If you want this: Enter this structured text:

If sugar low limit switch = low (on) and sugar high limit
switch = not high (on) then

IF Sugar.Low & Sugar.High THEN

inlet valve = open (on) Sugar.Inlet [:=] 1;

Until sugar high limit switch = high (off) ELSIF NOT(Sugar.High) THEN

Sugar.Inlet := 0;

END_IF;

If you want this: Enter this structured text:

If tank temperature > 100 IF tank.temp > 200 THEN

then pump = slow pump.fast :=1; pump.slow :=0; pump.off :=0;

If tank temperature > 200 ELSIF tank.temp > 100 THEN

then pump = fast pump.fast :=0; pump.slow :=1; pump.off :=0;

otherwise pump = off ELSE

pump.fast :=0; pump.slow :=0; pump.off :=1;

END_IF;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-16 Program Structured Text
CASE...OF Use CASE to select what to do based on a numerical value.

Operands:

Structured Text

Description: The syntax is:

See the table on the next page for valid selector values.

Operand: Type: Format: Enter:

numeric_
expression

SINT
INT
DINT
REAL

tag
expression

tag or expression that evaluates to a
number (numeric expression)

selector SINT
INT
DINT
REAL

immediate same type as numeric_expression

IMPORTANT If you use REAL values, use a range of values for a
selector because a REAL value is more likely to be
within a range of values than an exact match of one,
specific value.

CASE numeric_expression OF

selector1: statement;

selectorN: statement;

ELSE

statement;

END_CASE;

CASE numeric_expression OF

specify as many
alternative selector

values (paths) as you
need

selector1 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector1

selector2 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector2

selector3 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector3

optional

ELSE

<statement>;
.
.
.

statements to execute when
numeric_expression ≠ any
selector

END_CASE;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-17
The syntax for entering the selector values is:

The CASE construct is similar to a switch statement in the C or C++
programming languages. However, with the CASE construct the
controller executes only the statements that are associated with the
first matching selector value. Execution always breaks after the
statements of that selector and goes to the END_CASE statement.

Arithmetic Status Flags: not affected

Fault Conditions: none

When selector is: Enter:

one value value: statement

multiple, distinct values value1, value2, valueN : <statement>

Use a comma (,) to separate each value.

a range of values value1..valueN : <statement>

Use two periods (..) to identify the range.

distinct values plus a range
of values

valuea, valueb, value1..valueN : <statement>
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-18 Program Structured Text
Example

The [:=] tells the controller to also clear the outlet tags whenever the
controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic
reset (This applies only if you embed the assignment in the
action of the step or use the action to call a structured text
routine via a JSR instruction.)

If you want this: Enter this structured text:

If recipe number = 1 then CASE recipe_number OF

Ingredient A outlet 1 = open (1) 1: Ingredient_A.Outlet_1 :=1;

Ingredient B outlet 4 = open (1) Ingredient_B.Outlet_4 :=1;

If recipe number = 2 or 3 then 2,3: Ingredient_A.Outlet_4 :=1;

Ingredient A outlet 4 = open (1) Ingredient_B.Outlet_2 :=1;

Ingredient B outlet 2 = open (1)

If recipe number = 4, 5, 6, or 7 then 4..7: Ingredient_A.Outlet_4 :=1;

Ingredient A outlet 4 = open (1) Ingredient_B.Outlet_2 :=1;

Ingredient B outlet 2 = open (1)

If recipe number = 8, 11, 12, or 13 then 8,11..13 Ingredient_A.Outlet_1 :=1;

Ingredient A outlet 1 = open (1) Ingredient_B.Outlet_4 :=1;

Ingredient B outlet 4 = open (1)

Otherwise all outlets = closed (0) ELSE

Ingredient_A.Outlet_1 [:=]0;

Ingredient_A.Outlet_4 [:=]0;

Ingredient_B.Outlet_2 [:=]0;

Ingredient_B.Outlet_4 [:=]0;

END_CASE;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-19
FOR…DO Use the FOR…DO loop to do something a specific number of times
before doing anything else.

Operands:

Structured Text

Description: The syntax is:

Operand: Type: Format: Description:

count SINT
INT
DINT

tag tag to store count position as the
FOR…DO executes

initial_
value

SINT
INT
DINT

tag
expression
immediate

must evaluate to a number
specifies initial value for count

final_
value

SINT
INT
DINT

tag
expression
immediate

specifies final value for count, which
determines when to exit the loop

increment SINT
INT
DINT

tag
expression
immediate

(optional) amount to increment count
each time through the loop

If you don’t specify an increment, the
count increments by 1.

FOR count:= initial_value TO
final_value BY increment DO

<statement>;

END_FOR;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

FOR count := initial_value

TO final_value

optional { BY increment If you don’t specify an increment, the loop
increments by 1.

DO

<statement>;

optional

IF bool_expression THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

END_FOR;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-20 Program Structured Text
The following diagrams show how a FOR...DO loop executes and
how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

statement 1
statement 2
statement 3
statement 4
…

Done x number
of times?

no

yes

rest of the routine

statement 1
statement 2
statement 3
statement 4
…
Exit ?

Done x number
of times?

no

yes

rest of the routine

yes

no

The FOR…DO loop executes a specific
number of times.

To stop the loop before the count reaches the last
value, use an EXIT statement.

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1

If you want this: Enter this structured text:

Clear bits 0 - 31 in an array of BOOLs:
1. Initialize the subscript tag to 0.
2. Clear array[subscript] . For example, when

subscript = 5, clear array[5].
3. Add 1 to subscript.
4. If subscript is ≤ to 31, repeat 2 and 3.

Otherwise, stop.

For subscript:=0 to 31 by 1 do

array[subscript] := 0;

End_for;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-21
Example 2:

If you want this: Enter this structured text:

A user-defined data type (structure) stores the following
information about an item in your inventory:

• Barcode ID of the item (string data type)
• Quantity in stock of the item (DINT data type)

An array of the above structure contains an element for each
different item in your inventory. You want to search the array
for a specific product (use its bar code) and determine the
quantity that is in stock.

1. Get the size (number of items) of the Inventory array
and store the result in Inventory_Items (DINT tag).

2. Initialize the position tag to 0.
3. If Barcode matches the ID of an item in the array, then:

a. Set the Quantity tag = Inventory[position].Qty. This
produces the quantity in stock of the item.

b. Stop.
Barcode is a string tag that stores the bar code of the
item for which you are searching. For example, when
position = 5, compare Barcode to Inventory[5].ID.

4. Add 1 to position.
5. If position is ≤ to (Inventory_Items -1), repeat 3 and 4.

Since element numbers start at 0, the last element is 1
less than the number of elements in the array.
Otherwise, stop.

SIZE(Inventory,0,Inventory_Items);

For position:=0 to Inventory_Items - 1 do

If Barcode = Inventory[position].ID then

Quantity := Inventory[position].Qty;

Exit;

End_if;

End_for;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-22 Program Structured Text
WHILE…DO Use the WHILE…DO loop to keep doing something as long as certain
conditions are true.

Operands:

Structured Text

Description: The syntax is:

Operand: Type: Format: Enter:

bool_
expression

BOOL tag
expression

BOOL tag or expression that evaluates to
a BOOL value

WHILE bool_expression DO

<statement>;

END_WHILE;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

WHILE bool_expression1 DO

<statement>; statements to execute while
bool_expression1 is true

optional

IF bool_expression2 THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

END_WHILE;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-23
The following diagrams show how a WHILE...DO loop executes and
how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

While the bool_expression is true, the
controller executes only the statements within
the WHILE…DO loop.

To stop the loop before the conditions are true, use an
EXIT statement.

statement 1
statement 2
statement 3
statement 4
…
Exit ?

BOOL expression

true

false

rest of the routine

yes

no

statement 1
statement 2
statement 3
statement 4
…

BOOL expression

true

false

rest of the routine

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1

If you want this: Enter this structured text:

The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop.

This differs from the REPEAT...UNTIL loop because the
REPEAT...UNTIL loop executes the statements in the construct
and then determines if the conditions are true before
executing the statements again. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := 0;

While ((pos <= 100) & structarray[pos].value
<> targetvalue)) do

pos := pos + 2;

String_tag.DATA[pos] := SINT_array[pos];

end_while;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-24 Program Structured Text
Example 2:

If you want this: Enter this structured text:

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.
2. Count the number of elements in SINT_array (array

that contains the ASCII characters) and store the result
in SINT_array_size (DINT tag).

3. If the character at SINT_array[element_number] = 13
(decimal value of the carriage return), then stop.

4. Set String_tag[element_number] = the character at
SINT_array[element_number].

5. Add 1 to element_number. This lets the controller
check the next character in SINT_array.

6. Set the Length member of String_tag =
element_number. (This records the number of
characters in String_tag so far.)

7. If element_number = SINT_array_size, then stop. (You
are at the end of the array and it does not contain a
carriage return.)

8. Go to 3.

element_number := 0;

SIZE(SINT_array, 0, SINT_array_size);

While SINT_array[element_number] <> 13 do

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number + 1;

String_tag.LEN := element_number;

If element_number = SINT_array_size then

exit;

end_if;

end_while;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-25
REPEAT…UNTIL Use the REPEAT…UNTIL loop to keep doing something until
conditions are true.

Operands:

Structured Text

Description: The syntax is:

Operand: Type: Format: Enter:

bool_
expression

BOOL tag
expression

BOOL tag or expression that evaluates to
a BOOL value (BOOL expression)

REPEAT

<statement>;

UNTIL bool_expression

END_REPEAT;

IMPORTANT Make sure that you do not iterate within the loop too many times in
a single scan.

• The controller does not execute any other statements in the
routine until it completes the loop.

• If the time that it takes to complete the loop is greater than the
watchdog timer for the task, a major fault occurs.

• Consider using a different construct, such as IF...THEN.

REPEAT

<statement>; statements to execute while
bool_expression1 is false

optional

IF bool_expression2 THEN

EXIT; If there are conditions when you want to
exit the loop early, use other statements,
such as an IF...THEN construct, to
condition an EXIT statement.

END_IF;

UNTIL bool_expression1

END_REPEAT;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-26 Program Structured Text
The following diagrams show how a REPEAT...UNTIL loop executes
and how an EXIT statement leaves the loop early.

Arithmetic Status Flags: not affected

Fault Conditions:

Example 1:

While the bool_expression is false, the
controller executes only the statements within the
REPEAT…UNTIL loop.

To stop the loop before the conditions are false, use
an EXIT statement.

statement 1
statement 2
statement 3
statement 4
…

BOOL expression

false

true

rest of the routine
BOOL expression

false

true

rest of the routine

statement 1
statement 2
statement 3
statement 4
…
Exit ?

yes

no

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1

If you want this: Enter this structured text:

The REPEAT...UNTIL loop executes the statements in the
construct and then determines if the conditions are true before
executing the statements again.

This differs from the WHILE...DO loop because the WHILE...DO
The WHILE...DO loop evaluates its conditions first. If the
conditions are true, the controller then executes the
statements within the loop. The statements in a
REPEAT...UNTIL loop are always executed at least once. The
statements in a WHILE...DO loop might never be executed.

pos := -1;

REPEAT

pos := pos + 2;

UNTIL ((pos = 101) OR
(structarray[pos].value = targetvalue))

end_repeat;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Program Structured Text 7-27
Example 2:

If you want this: Enter this structured text:

Move ASCII characters from a SINT array into a string tag. (In
a SINT array, each element holds one character.) Stop when
you reach the carriage return.

1. Initialize Element_number to 0.
2. Count the number of elements in SINT_array (array

that contains the ASCII characters) and store the result
in SINT_array_size (DINT tag).

3. Set String_tag[element_number] = the character at
SINT_array[element_number].

4. Add 1 to element_number. This lets the controller
check the next character in SINT_array.

5. Set the Length member of String_tag =
element_number. (This records the number of
characters in String_tag so far.)

6. If element_number = SINT_array_size, then stop. (You
are at the end of the array and it does not contain a
carriage return.)

7. If the character at SINT_array[element_number] = 13
(decimal value of the carriage return), then stop.
Otherwise, go to 3.

element_number := 0;

SIZE(SINT_array, 0, SINT_array_size);

Repeat

String_tag.DATA[element_number] :=
SINT_array[element_number];

element_number := element_number + 1;

String_tag.LEN := element_number;

If element_number = SINT_array_size then

exit;

end_if;

Until SINT_array[element_number] = 13

end_repeat;
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

7-28 Program Structured Text
Comments To make your structured text easier to interpret, add comments to it.

• Comments let you use plain language to describe how your
structured text works.

• Comments do not affect the execution of the structured text.

To add comments to your structured text:

For example:

To add a comment: Use one of these formats:

on a single line //comment

(*comment*)

/*comment*/

at the end of a line of structured
text

within a line of structured text (*comment*)

/*comment*/

that spans more than one line (*start of comment . . . end of
comment*)

/*start of comment . . . end of
comment*/

Format: Example:

//comment At the beginning of a line
//Check conveyor belt direction
IF conveyor_direction THEN...

At the end of a line
ELSE //If conveyor isn’t moving, set alarm light
light := 1;
END_IF;

(*comment*) Sugar.Inlet[:=]1;(*open the inlet*)

IF Sugar.Low (*low level LS*)& Sugar.High (*high level
LS*)THEN...

(*Controls the speed of the recirculation pump. The
speed depends on the temperature in the tank.*)
IF tank.temp > 200 THEN...

/*comment*/ Sugar.Inlet:=0;/*close the inlet*/

IF bar_code=65 /*A*/ THEN...

/*Gets the number of elements in the Inventory array
and stores the value in the Inventory_Items tag*/
SIZE(Inventory,0,Inventory_Items);
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Chapter 14

Force Logic Elements

When to Use This
Procedure

Use a force to override data that your logic either uses or produces.
For example, use forces in the following situations:

• test and debug your logic

• check wiring to an output device

• temporarily keep your process functioning when an input
device has failed

Use forces only as a temporary measure. They are not intended to be
a permanent part of your application.

How to Use This Procedure

If you want to: See:

review the precautions that you should take whenever you add, change, remove, or disable
forces

“Precautions” on page 14-2

determine current state of forces in your project “Check Force Status” on page 14-4

determine which type of element to force in your project “What to Force” on page 14-6

review general information about I/O forces, including which elements you are permitted to
force and how an I/O force effects your project

“When to Use an I/O Force” on page 14-6

force an I/O value “Add an I/O Force” on page 14-8

review general information about stepping through a transition or a simultaneous path “When to Use Step Through” on page 14-9

step through an active transition “Step Through a Transition or a Force of a
Path” on page 14-9

step through a simultaneous path that is forced false

review general information about SFC forces, including which elements you are permitted
to force and how the forces effect the execution of your SFC

“When to Use an SFC Force” on page 14-9

force a transition or simultaneous path within an SFC “Add an SFC Force” on page 14-12

stop the effects of a force “Remove or Disable Forces” on page 14-13
1 Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

14-2 Force Logic Elements
Precautions When you use forces, take the following precautions:

Enable Forces

For a force to take effect, you enable forces. You can only enable and
disable forces at the controller level.

• You can enable I/O forces and SFC forces separately or at the
same time.

• You cannot enable or disable forces for a specific module, tag
collection, or tag element.

ATTENTION

!
Forcing can cause unexpected machine motion that could
injure personnel. Before you use a force, determine how the force will
effect your machine or process and keep personnel away from the
machine area.

• Enabling I/O forces causes input, output, produced, or consumed
values to change.

• Enabling SFC forces causes your machine or process to go to a
different state or phase.

• Removing forces may still leave forces in the enabled state.

• If forces are enabled and you install a force, the new force
immediately takes effect.

IMPORTANT If you download a project that has forces enabled,
the programming software prompts you to enable or
disable forces after the download completes.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Force Logic Elements 14-3
When forces are in effect (enabled), a appears next to the forced
element.

Disable or Remove a Force

To stop the effect of a force and let your project execute as
programmed, disable or remove the force.

• You can disable or remove I/O and SFC forces at the same time
or separately.

• Removing a force on an alias tag also removes the force on the
base tag.

▼

state to which the element is
forced

forces are in effect (enabled)

ATTENTION

!
Changes to forces can cause unexpected machine motion that could
injure personnel. Before you disable or remove forces, determine how
the change will effect your machine or process and keep personnel
away from the machine area.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

14-4 Force Logic Elements
Check Force Status Before you use a force, determine the status of forces for the
controller. You can check force status in the following ways:

Online Toolbar

The Online toolbar shows the status of forces. It shows the status of
I/O forces and SFC forces separately.

To determine the status of: Use any of the following:

I/O forces • Online Toolbar

• FORCE LED

• GSV Instruction

SFC forces Online Toolbar

Forces tab

This: Means:

Enabled • If the project contains any forces of this type, they are
overriding your logic.

• If you add a force of this type, the new force
immediately takes effect

Disabled Forces of this type are inactive. If the project contains any
forces of this type, they are not overriding your logic.

Installed At least one force of this type exists in the project.

None Installed No forces of this type exist in the project.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Force Logic Elements 14-5
FORCE LED

If your controller has a FORCE LED, use the LED to determine
the status of any I/O forces.

GSV Instruction

The following example shows how to use a GSV instruction to get the
status of forces.

where:

Force_Status is a DINT tag.

IMPORTANT The FORCE LED shows only the status of I/O forces.
It does not show that status of SFC forces.

If the FORCE LED is: Then:

off • No tags contain force values.

• I/O forces are inactive (disabled).

flashing • At least one tag contains a force value.

• I/O forces are inactive (disabled).

solid • I/O forces are active (enabled).

• Force values may or may not exist.

IMPORTANT The ForceStatus attribute shows only the status of
I/O forces. It does not show the status of SFC forces.

To determine if: Examine this bit: For this value:

forces are installed 0 1

no forces are installed 0 0

forces are enabled 1 1

forces are disabled 1 0
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

14-6 Force Logic Elements
What to Force You can force the following elements of your project:

When to Use an I/O Force Use an I/O force to accomplish the following:

• override an input value from another controller (i.e., a
consumed tag)

• override an input value from an input device

• override your logic and specify an output value for another
controller (i.e., a produced tag)

• override your logic and specify the state of an output device

When you force an I/O value:

• You can force all I/O data, except for configuration data.

• If the tag is an array or structure, such as an I/O tag, force a
BOOL, SINT, INT, DINT, or REAL element or member.

• If the data value is a SINT, INT, or DINT, you can force the entire
value or you can force individual bits within the value.
Individual bits can have a force status of:

– no force

– force on

– force off

If you want to: Then:

override an input value, output value, produced tag, or consumed tag Add an I/O Force

override the conditions of a transition one time to go from an active step to the next step Step Through a Transition or a Force
of a Path

override one time the force of a simultaneous path and execute the steps of the path

override the conditions of a transition in a sequential function chart Add an SFC Force

execute some but not all the paths of a simultaneous branch of a sequential function chart

IMPORTANT Forcing increases logic execution time. The more
values you force, the longer it takes to execute the
logic.

IMPORTANT I/O forces are held by the controller and not by the
programming workstation. Forces remain even if the
programming workstation is disconnected.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Force Logic Elements 14-7
• You can also force an alias to an I/O structure member,
produced tag, or consumed tag.

– An alias tag shares the same data value as its base tag, so
forcing an alias tag also forces the associated base tag.

– Removing a force from an alias tag removes the force from
the associated base tag.

Force an Input Value

Forcing an input or consumed tag:

• overrides the value regardless of the value of the physical device
or produced tag

• does not affect the value received by other controllers
monitoring that input or produced tag

Force an Output Value

Forcing an output or produced tag overrides the logic for the physical
device or other controller (s). Other controllers monitoring that output
module in a listen-only capacity will also see the forced value.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

14-8 Force Logic Elements
Add an I/O Force To override an input value, output value, produced tag, or consumed
tag, use an I/O force:

1. What is the state of the I/O Forces indicator?

2. Open the routine that contains the tag that you want to force.

3. Right-click the tag and choose Monitor… If necessary, expand
the tag to show the value that you want to force (e.g., BOOL
value of a DINT tag).

4. Install the force value:

5. Are I/O forces enabled? (See step 1.)

ATTENTION

!
Forcing can cause unexpected machine motion that could
injure personnel. Before you use a force, determine how the force will
effect your machine or process and keep personnel away from the
machine area.

• Enabling I/O forces causes input, output, produced, or consumed
values to change.

• If forces are enabled and you install a force, the new force
immediately takes effect.

If: Then note the following:

off No I/O forces currently exist.

flashing No I/O forces are active. But at least one force already exists in your
project. When you enable I/O forces, all existing I/O forces will also
take effect.

solid I/O forces are enabled (active). When you install (add) a force, it
immediately takes effect.

To force a: Do this:

BOOL value Right-click the tag and choose Force ON or Force OFF.

non-BOOL value In the Force Mask column for the tag, type the value to which
you want to force the tag. Then press the Enter key.

If: Then:

no From the Logic menu, choose I/O Forcing ⇒ Enable All I/O Forces. Then
choose Yes to confirm.

yes Stop.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Force Logic Elements 14-9
When to Use Step Through To override a false transition one time and go from an active step to
the next step, use the Step Through option. With the Step Through
option:

• You do not have to add, enable, disable, or remove forces.

• The next time the SFC reaches the transition, it executes
according to the conditions of the transition.

This option also lets you override one time the false force of a
simultaneous path. When you step through the force, the SFC
executes the steps of the path.

Step Through a Transition
or a Force of a Path

To step through the transition of an active step or a force of a
simultaneous path:

1. Open the SFC routine.

2. Right-click the transition or the path that is forced and choose
Step Through.

When to Use an SFC Force To override the logic of an SFC, you have the following options:

Force a Transition

To override the conditions of a transition through repeated executions
of an SFC, force the transition. The force remains until you remove it
or disable forces

If you want to: Then:

override the conditions of a transition each
time the SFC reaches the transition

Force a Transition

prevent the execution of one or more paths
of a simultaneous branch

Force a Simultaneous Path

If you want to: Then:

prevent the SFC from going to the next step force the transition false

cause the SFC go to the next step regardless of transition
conditions

force the transition true
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

14-10 Force Logic Elements
If you force a transition within a simultaneous branch to be false, the
SFC stays in the simultaneous branch as long as the force is active
(installed and enabled).

• To leave a simultaneous branch, the last step of each path must
execute at least one time and the transition below the branch
must be true.

• Forcing a transition false prevents the SFC from reaching the last
step of a path.

• When you remove or disable the force, the SFC can execute the
rest of the steps in the path.

For example, to exit this branch, the
SFC must be able to:

• execute Step_011 at least
once

• get past Tran_011 and
execute Step_012 at least
once

• determine that Tran_012 is
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Force Logic Elements 14-11
Force a Simultaneous Path

To prevent the execution of a path of a simultaneous branch, force the
path false. When the SFC reaches the branch, it executes only the
un-forced paths.

If you force a path of a simultaneous branch to be false, the SFC stays
in the simultaneous branch as long as the force is active (installed and
enabled).

• To leave a simultaneous branch, the last step of each path must
execute at least one time and the transition below the branch
must be true.

• Forcing a path false prevents the SFC from entering a path and
executing its steps.

• When you remove or disable the force, the SFC can execute the
steps in the path.

This path does not execute. This path executes.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

14-12 Force Logic Elements
Add an SFC Force To override the logic of an SFC, use an SFC force:

1. What is the state of the SFC Forces indicator?

2. Open the SFC routine.

3. Right-click the transition or start of a simultaneous path that you
want to force, and choose either Force TRUE (only for a
transition) or Force FALSE.

4. Are SFC forces enabled? (See step 1.)

ATTENTION

!
Forcing can cause unexpected machine motion that could
injure personnel. Before you use a force, determine how the force will
effect your machine or process and keep personnel away from the
machine area.

• Enabling SFC forces causes your machine or process to go to a
different state or phase.

• If forces are enabled and you install a force, the new force
immediately takes effect.

If: Then note the following:

off No SFC forces currently exist.

flashing No SFC forces are active. But at least one force already exists in your
project. When you enable SFC forces, all existing SFC forces will also
take effect.

solid SFC forces are enabled (active). When you install (add) a force, it
immediately takes effect.

If: Then:

no From the Logic menu, choose SFC Forcing ⇒ Enable All SFC Forces. Then
choose Yes to confirm.

yes Stop.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Force Logic Elements 14-13
Remove or Disable Forces

Remove an Individual Force

1. Open the routine that contains the force that you want to
remove.

2. What is the language of the routine?

3. Right-click the tag that has the force and choose Monitor…
If necessary, expand the tag to show the value that is forced
(e.g., BOOL value of a DINT tag).

4. Right-click the tag or element that has the force and choose
Remove Force.

ATTENTION

!
Changes to forces can cause unexpected machine motion that could
injure personnel. Before you disable or remove forces, determine how the
change will effect your machine or process and keep personnel away from
the machine area.

If you want to: And: Then:

stop an individual force leave other forces enabled and in effect Remove an Individual Force

stop all I/O forces but leave all SFC forces
active

leave the I/O forces in the project Disable All I/O Forces

remove the I/O forces from the project Remove All I/O Forces

stop all SFC forces but leave all I/O forces
active

leave the SFC forces in the project Disable All SFC Forces

remove the SFC forces from the project Remove All SFC Forces

ATTENTION

!
If you remove an individual force, forces remain in the enabled state
and any new force immediately takes effect.

Before you remove a force, determine how the change will effect your
machine or process and keep personnel away from the machine area.

If: Then:

SFC Go to step 4.

ladder logic Go to step 4.

function block Go to step 3.

structured text Go to step 3.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

14-14 Force Logic Elements
Disable All I/O Forces

From the Logic menu, choose I/O Forcing ⇒ Disable All I/O Forces.
Then choose Yes to confirm.

Remove All I/O Forces

From the Logic menu, choose I/O Forcing ⇒ Remove All I/O Forces.
Then choose Yes to confirm.

Disable All SFC Forces

From the Logic menu, choose SFC Forcing ⇒ Disable All SFC Forces.
Then choose Yes to confirm.

Remove All SFC Forces

From the Logic menu, choose SFC Forcing ⇒ Remove All SFC Forces.
Then choose Yes to confirm.
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Index

A
action 6-19

add 6-16
assign order 6-22
assign qualifier 6-17
boolean 5-20
choose between boolean and

non-boolean 5-18
configure 6-17
data type 5-20
non-boolean 5-18
program 5-18, 6-19
qualifier 5-23
rename 6-16
reset 5-42
store 5-42
use expression 6-18
use of structured text 6-19

alarm
sequential function chart 5-28, 6-12

arithmetic operators
structured text 7-6

ASCII
structured text assignment 7-4

assignment
ASCII character 7-4
non-retentive 7-3
retentive 7-2

automatic reset
sequential function chart 5-38

B
bitwise operators

structured text 7-10
BOOL expression

sequential function chart 5-26, 6-14
structured text 7-4

boolean action 5-20, 6-19
program 5-20

branch
sequential function chart 5-12, 6-5,

6-6

C
CASE 7-16
comments

structured text 7-28
configure

action 6-17
alarm 6-12

execution of sequential function chart
5-50, 6-28

step 6-11
construct

structured text 7-12

D
data

force 14-6, 14-8
description

structured text 7-28
disable

force 14-3, 14-13
document

sequential function chart 6-23
structured text 7-28

documentation
show or hide in sequential function chart

6-26
don"t scan

sequential function chart 5-34

E
enable

force 14-2
enter

action 6-16
selection branch 6-6
sequential function chart 6-3
simultaneous branch 6-5

EOT instruction 5-27
execution

sequential function chart 5-51, 6-28
expression

BOOL expression
sequential function chart 5-26,

6-14
structured text 7-4

numeric expression
sequential function chart 6-12,

6-18
structured text 7-4

order of execution
structured text 7-10

structured text
arithmetic operators 7-6
bitwise operators 7-10
functions 7-6
logical operators 7-9
overview 7-4
relational operators 7-7
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

2 Index
F
FOR…DO 7-19
force

disable 14-3, 14-13
enable 14-2
LED 14-4
monitor 14-4
options 14-6
remove 14-3, 14-13
safety precautions 14-2
sequential function chart 14-9, 14-12
tag 14-6, 14-8

function block diagram
force a value 14-1

functions
structured text 7-6

I
IF...THEN 7-13

J
jump

sequential function chart 5-17

L
ladder logic

force a value 14-1
override a value 14-1

last scan
sequential function chart 5-32

LED
force 14-4

logical operators
structured text 7-9

M
main routine

use of sequential function chart 5-6
mark as boolean 6-19
math operators

structured text 7-6
monitor

forces 14-4

N
numeric expression 6-12, 6-18, 7-4

O
operators

order of execution
structured text 7-10

order of execution
structured text expression 7-10

P
pause an SFC 5-51
periodic task

application for 5-5
postscan

sequential function chart 5-32
structured text 7-3

priority
selection branch 6-8

program
action 5-18, 6-19
boolean action 5-20
transition 6-14

programmatic reset option 5-35

Q
qualifier

assign 6-17
choose 5-23

R
relational operators

structured text 7-7
remove

force 14-3, 14-13
rename

action 6-16
step 6-11
transition 6-14

REPEAT…UNTIL 7-25
reset

action 5-42
SFC 5-46

reset an SFC 5-49, 5-51
restart

sequential function chart 5-46
routine

as transition 5-27
nest within sequential function chart

5-49
verify 6-29
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

Index 3
S
selection branch

assign priorities 6-8
create 6-6
overview 5-15

sequential function chart
action

assign order 6-22
call a subroutine 6-21
configure 6-17
enter 6-16
overview 5-18
program 6-19
rename 6-16
use of boolean action 5-20

automatic reset option 5-38
boolean action 5-20
call a subroutine 6-21
configure execution 6-28
define tasks 5-5
document 6-23
don"t scan option 5-34
enter a new element 6-3
execution

configure 5-50
diagrams 5-51
pause 5-51

force element 14-1, 14-9, 14-12
last scan 5-32
nest 5-49
numeric expression 6-12, 6-18
organize a project 5-6
organize steps 5-12
pause an SFC 5-51
programmatic reset option 5-35
qualifier 5-23
reset

data 5-32
SFC 5-46, 5-49, 5-51

restart 5-46
return to previous step 6-9
selection branch

assign priorities 6-8
create 6-6
overview 5-15

sequence 5-14
show or hide documentation 6-26
simultaneous branch

create 6-5
overview 5-16

step
configure 6-11
define 5-6

organize 5-12
overview 5-6
rename 6-11

step through
simultaneous branch 14-9
transition 14-9

step through simultaneous branch 14-9
step through transition 14-9
stop 5-45
text box 6-25
transition

overview 5-24
program 6-14
rename 6-14

wire 5-17
SFC_ACTION structure 5-20
SFC_STEP structure 5-8
SFC_STOP structure 5-47
SFP instruction 5-51
SFR instruction 5-46, 5-49, 5-51
simultaneous branch 5-16

enter 6-5
force 14-9, 14-12
step through 14-9

status
force 14-4

step
add action 6-16
alarm 5-28
assign preset time 6-11
configure 6-11
configure alarm 6-12
data type 5-8
define 5-6
organize in sequential function chart

5-12
rename 6-11
selection branch 5-15
sequence 5-14
simultaneous branch 5-16
timer 5-28

step through
simultaneous branch 14-9
transition 14-9

stop
data type 5-47
sequential function chart 5-45

store
action 5-42

string
evaluation in structured text 7-8

structure
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

4 Index
SFC_ACTION 5-20
SFC_STEP 5-8
SFC_STOP 5-47

structured text
arithmetic operators 7-6
assign ASCII character 7-4
assignment 7-2
bitwise operators 7-10
CASE 7-16
comments 6-23, 7-28
components 7-1
contructs 7-12
evaluation of strings 7-8
expression 7-4
FOR…DO 7-19
force a value 14-1
functions 7-6
IF...THEN 7-13
in action 6-19
logical operators 7-9
non-retentive assignment 7-3
numeric expression 7-4
relational operators 7-7
REPEAT…UNTIL 7-25
WHILE…DO 7-22

T
tag

force 14-6, 14-8
task

define 5-5
text box

sequential function chart 6-25
show or hide in sequential function chart

6-26
transition

BOOL expression 5-26
call subroution 6-15
choose program method 5-26
define 5-24
EOT instruction 5-27
force 14-9, 14-12
program 6-14
rename 6-14
step through 14-9
use of a subroutine 5-27

V
verify

routine 6-29

W
WHILE…DO 7-22
wire

sequential function chart 5-17, 6-9
Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004

How Are We Doing?
Your comments on our technical publications will help us serve you better in the future.
Thank you for taking the time to provide us feedback.

You can complete this form and mail it back to us, visit us online at www.ab.com/manuals, or

email us at RADocumentComments@ra.rockwell.com

vr

Please complete the sections below. Where applicable, rank the feature (1=needs improvement, 2=satisfactory, and 3=outstanding).

Pub. Title/Type SFC and ST Programming Languages

Cat. No. Excerpt from the Logix5000
Controllers Common
Procedures, publication
1756-PM001

Pub. No. 1756-PM003G-EN-E
(excerpt of
1756-PM001G)

Pub. Date March 2004 Part No. 957867-43

Overall Usefulness 1 2 3 How can we make this publication more useful for you?

Completeness
(all necessary information

is provided)

1 2 3 Can we add more information to help you?

procedure/step illustration feature

example guideline other

explanation definition

Technical Accuracy
(all provided information

is correct)

1 2 3 Can we be more accurate?

text illustration

Clarity
(all provided information is

easy to understand)

1 2 3 How can we make things clearer?

Other Comments You can add additional comments on the back of this form.

Your Name Location/Phone

Your Title/Function Would you like us to contact you regarding your comments?

___No, there is no need to contact me

___Yes, please call me

___Yes, please email me at __________________________

___Yes, please contact me via ________________________

Return this form to: Allen-Bradley Marketing Communications, 1 Allen-Bradley Dr., Mayfield Hts., OH 44124-9705

Phone: 440-646-3176 Fax: 440-646-3525 Email: RADocumentComments@ra.rockwell.com
Publication ICCG-5.21- January 2001 PN 955107-82

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

1 ALLEN-BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

PLEASE FASTEN HERE (DO NOT STAPLE)

PL
EA

SE
 R

EM
OV

E

ASCII Character Codes
Character Dec Hex

[ctrl-@] NUL 0 $00

[ctrl-A] SOH 1 $01

[ctrl-B] STX 2 $02

[ctrl-C] ETX 3 $03

[ctrl-D] EOT 4 $04

[ctrl-E] ENQ 5 $05

[ctrl-F] ACK 6 $06

[ctrl-G] BEL 7 $07

[ctrl-H] BS 8 $08

[ctrl-I] HT 9 $09

[ctrl-J] LF 10 $l ($0A)

[ctrl-K] VT 11 $0B

[ctrl-L] FF 12 $0C

[ctrl-M] CR 13 $r ($0D)

[ctrl-N] SO 14 $0E

[ctrl-O] SI 15 $0F

[ctrl-P] DLE 16 $10

[ctrl-Q] DC1 17 $11

[ctrl-R] DC2 18 $12

[ctrl-S] DC3 19 $13

[ctrl-T] DC4 20 $14

[ctrl-U] NAK 21 $15

[ctrl-V] SYN 22 $16

[ctrl-W] ETB 23 $17

[ctrl-X] CAN 24 $18

[ctrl-Y] EM 25 $19

[ctrl-Z] SUB 26 $1A

ctrl-[ESC 27 $1B

[ctrl-\] FS 28 $1C

ctrl-] GS 29 $1D

[ctrl-^] RS 30 $1E

[ctrl-_] US 31 $1F

SPACE 32 $20

! 33 $21

“ 34 $22

35 $23

$ 36 $24

% 37 $25

& 38 $26

‘ 39 $27

(40 $28

) 41 $29

* 42 $2A

+ 43 $2B

, 44 $2C

- 45 $2D

. 46 $2E

/ 47 $2F

0 48 $30

1 49 $31

2 50 $32

3 51 $33

4 52 $34

5 53 $35

6 54 $36

7 55 $37

8 56 $38

9 57 $39

: 58 $3A

; 59 $3B

< 60 $3C

= 61 $3D

> 62 $3E

? 63 $3F

Character Dec Hex

@ 64 $40

A 65 $41

B 66 $42

C 67 $43

D 68 $44

E 69 $45

F 70 $46

G 71 $47

H 72 $48

I 73 $49

J 74 $4A

K 75 $4B

L 76 $4C

M 77 $4D

N 78 $4E

O 79 $4F

P 80 $50

Q 81 $51

R 82 $52

S 83 $53

T 84 $54

U 85 $55

V 86 $56

W 87 $57

X 88 $58

Y 89 $59

Z 90 $5A

[91 $5B

\ 92 $5C

] 93 $5D

^ 94 $5E

_ 95 $5F

Character Dec Hex

‘ 96 $60

a 97 $61

b 98 $62

c 99 $63

d 100 $64

e 101 $65

f 102 $66

g 103 $67

h 104 $68

i 105 $69

j 106 $6A

k 107 $6B

l 108 $6C

m 109 $6D

n 110 $6E

o 111 $6F

p 112 $70

q 113 $71

r 114 $72

s 115 $73

t 116 $74

u 117 $75

v 118 $76

w 119 $77

x 120 $78

y 121 $79

z 122 $7A

{ 123 $7B

| 124 $7C

} 125 $7D

~ 126 $7E

DEL 127 $7F

Character Dec Hex

Publication 1756-PM003G-EN-E (excerpt of 1756-PM001G) - March 2004 1 PN 957867-43
Supersedes Publication 1756-PM003F-EN-E - June 2003 Copyright © 2004 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Rockwell Automation
Support

Rockwell Automation provides technical information on the web to assist you
in using our products. At http://support.rockwellautomation.com, you can
find technical manuals, a knowledge base of FAQs, technical and application
notes, sample code and links to software service packs, and a MySupport
feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation,
configuration and troubleshooting, we offer TechConnect Support programs.
For more information, contact your local distributor or Rockwell Automation
representative, or visit http://support.rockwellautomation.com.

Installation Assistance

If you experience a problem with a hardware module within the first 24
hours of installation, please review the information that's contained in this
manual. You can also contact a special Customer Support number for initial
help in getting your module up and running:

New Product Satisfaction Return

Rockwell tests all of our products to ensure that they are fully operational
when shipped from the manufacturing facility. However, if your product is
not functioning and needs to be returned:

Back Cover
ControlNet is a trademark of ControlNet International, Ltd.

DeviceNet is a trademark of the Open DeviceNet Vendor Association.

United States 1.440.646.3223
Monday – Friday, 8am – 5pm EST

Outside United
States

Please contact your local Rockwell Automation representative for any
technical support issues.

United States Contact your distributor. You must provide a Customer Support case
number (see phone number above to obtain one) to your distributor in
order to complete the return process.

Outside United
States

Please contact your local Rockwell Automation representative for
return procedure.

	1756-PM003G-EN-E, SFC and ST Programming Languages Programming Manual
	Important User Information
	Preface
	Purpose of this Manual
	Who Should Use this Manual
	When to Use this Manual
	How to Use this Manual

	Table of Contents
	5 - Design a Sequential Function Chart
	When to Use This Procedure
	How to Use This Procedure
	What is a Sequential Function Chart?
	How to Design an SFC: Overview
	Define the Tasks
	Choose How to Execute the SFC
	Define the Steps of the Process
	Organize the Steps
	Add Actions for Each Step
	Describe Each Action in Pseudocode
	Choose a Qualifier for an Action
	Define the Transition Conditions
	Transition After a Specified Time
	Turn Off a Device at the End of a Step
	Keep Something On From Step-to-Step
	End the SFC
	Nest an SFC
	Configure When to Return to the OS/JSR
	Pause or Reset an SFC
	Execution Diagrams

	6 - Program a Sequential Function Chart
	When to Use This Procedure
	Before You Use This Procedure
	How to Use This Procedure
	Add an SFC Element
	Create a Simultaneous Branch
	Create a Selection Branch
	Set the Priorities of a Selection Branch
	Return to a Previous Step
	Rename a Step
	Configure a Step
	Rename a Transition
	Program a Transition
	Add an Action
	Rename an Action
	Configure an Action
	Program an Action
	Assign the Execution Order of Actions
	Document the SFC
	Show or Hide Text Boxes or Tag Descriptions
	Configure the Execution of the SFC
	Verify the Routine

	7 - Program Structured Text
	When to Use This Chapter
	Structured Text Syntax
	Assignments
	Expressions
	Instructions
	Constructs
	IF...THEN
	CASE...OF
	FOR…DO
	WHILE…DO
	REPEAT…UNTIL
	Comments

	14 - Force Logic Elements
	When to Use This Procedure
	How to Use This Procedure
	Precautions
	Check Force Status
	What to Force
	When to Use an I/O Force
	Add an I/O Force
	When to Use Step Through
	Step Through a Transition or a Force of a Path
	When to Use an SFC Force
	Add an SFC Force
	Remove or Disable Forces

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

	Back Cover

